APPENDIX FIVE

Characterization Report

MC-40 Cyclotron Vault at the University of Texas Health Science Center 1132-REP-001 Rev. 0

October 2017

Prepared by:

AMERIPHYSICS

9111 Cross Park Drive, Suite D200 Knoxville, TN 37923 800.563.7497

RECORD OF REVISIONS

Change Number	Date	Description of Change	Approval
0	10/16/17	Initial Distribution	イH

APPROVALS

Prepared By	
Tom Hansen III	<u>10/30/2017</u> Date
Review and Approval Timothy Pratt	
Review and Approval	
UT Health	

1132-REP-001, Rev. 0 Characterization Report, MC-40 Cyclotron Vault at UTHealth

Contents

1.	INTRODUCTION	5
2.	RADIONUCLIDES OF CONCERN	5
3.	FACILITY DESCRIPTION	6
4.	RELEASE CRITERION	7
5.	CHARACTERIZATION SURVEY PROCEDURES	7
5.1.	Survey Instrumentation	11
5.2.	Instrument Calibration	12
5.3.	Daily Response Checks	12
5.4.	Data Validation	12
6.	DATA INTERPRETATION	13
7.	FINDINGS AND RESULTS	13
7.1.	Explanation of Data Presentation	13
7.2.	Surface Scans	14
7.3.	Surface Activity Measurements	14
7.4.	Radionuclide Concentrations in Samples	14
7.5.	Quality Control	16
8.	COMPARISON OF RESULTS WITH GUIDELINES	16
9.	RECOMMENDED REMEDIATION OF VAULT SURFACES	17
10.	CONCLUSIONS	17
11.	REFERENCES	18

Attachments

Attachment 1: Characterization Survey Packages

Attachment 2: Laboratory Reports for Concrete Volumetric Samples

Attachment 3: RESRAD-BUILD Reports

Attachment 4: Liquid Scintillation Counting Results

Abbreviations and Acronyms

ALARA As Low As Reasonably Achievable

Ameriphysics Ameriphysics, LLC cpm counts per minute

CHP Certified Health Physicist

DCGL Derived Concentration Guideline Level

dpm disintegration per minute DQO Data Quality Objective

DSHS Texas Department of State Health Services

EH&S Environmental Health & Safety LSC Liquid Scintillation Counter

MARSSIM Multi-Agency Radiation Survey and Site Investigation Manual

MDC Minimum Detectable Concentration

Nal Sodium Iodide

NIST National Institute of Standards and Technology

QAPP Quality Assurance Project Plan
RPD Relative Percent Difference
TEDE Total Effective Dose Equivalent

UTHealth University of Texas Health Science Center at Houston

1. INTRODUCTION

The purpose of this Characterization Report is to provide the data necessary to aid in the decision-making process for decommissioning of University of Texas Health Science Center at Houston (UTHealth) MC-40 Cyclotron Vault located at 6431 Fannin St, Houston, TX, 77030. UTHealth contracted Ameriphysics, LLC (Ameriphysics) to perform the characterization activities described in this report. All work was performed under UTHealth's Texas Department of State Health Services (DSHS) radioactive material license.

The characterization plan used to develop this report was developed using the guidance provided in NUREG-1757, "Consolidated NMSS Decommissioning Guidance" and NUREG-1575, "Multi-Agency Radiation Survey and Site Investigation Manual" (MARSSIM) and provided the approach, methods, and techniques for the radiological characterization of UTHealth's MC-40 Cyclotron Vault. These methods ensured technically defensible data were generated to aid in the decommissioning decision-making process.

Radiological requirements for license termination are described in 25 Texas Administrative Code §289.202(ddd)(1)(D)(2), Radiological requirements for unrestricted use. The release criterion is dose-based and cannot be measured directly. MARSSIM uses the term derived concentration guideline level (DCGL) to describe radionuclide-specific surface or volume residual radioactivity levels that correspond to the release criterion. The release criterion cannot be translated into radionuclide-specific DCGLs without characterization data. Consequently, obtaining high quality data for translation was a major focus of this project.

2. RADIONUCLIDES OF CONCERN

While the cyclotron was operated, neutrons were freed as a result of collisions with energized protons. In turn, these neutrons collided with surrounding nuclei and caused activation. As a result, induced radioactivity is expected in the cyclotron and any apparatus or building material near the cyclotron or along the beam travel path.

Studies pertaining to induced radioactivity in cyclotrons are published in a number of papers. The radionuclide distribution is material specific, and the concentration varies according to proximity to the beam and interferences that cause losses. Radiation emitted is beta and gamma; however, it is important to consider that atoms undergoing decay are trapped within the volume of the materials and surfaces. According to the Radiological Health Handbook, the maximum range of a 1 MeV beta particle is less than 1/10th of an inch in lead, copper, iron, aluminum, and concrete. At 0.1 MeV, the maximum range is less than 1/100th of an inch.

Unlike betas and other charged particles that exhibit finite ranges, gammas cannot be completely attenuated. Rather, the intensity of this radiation is reduced by increasingly thicker

absorbers. Consequently, gamma radiation is the radiation of concern except in instances where surface contamination is suspected or identified.

Based on experience on other cyclotron decommissioning projects, induced residual radioactivity in vault structures is almost exclusively attributed to Co-60 and Eu-152 after a few months of decay. However, there are a couple more radionuclides that routinely have positive results, these are Cs-134 and Eu-154. Small amounts of H-3 and Fe-55 have also been present at cyclotron sites and have been investigated in conjunction with this characterization. Since this site has not operated for more than 16 years, a significant amount of decay has occurred. However, samples sent for gamma spectroscopy were analyzed for all radionuclides of concern typically associated with neutron activation in the cyclotron equipment and building materials.

3. FACILITY DESCRIPTION

UTHealth operated a Scanditronix MC-40 cyclotron to produce radioisotopes for positron emission tomography from 1984 to 2001 under DSHS License L03685. On June 8, 2001, the facility was inundated by water from Tropical Storm Allison which rendered the cyclotron permanently inoperable. Since 2001, the facility and supporting rooms have been repurposed for use by UTHealth Environmental Health & Safety (EH&S). The cyclotron line, associated materials, and activated components have remained in storage. EH&S has utilized available space within the facility for sealed source storage, other radioactive waste processing and storage under the UTHealth broad license, and chemical waste processing. On June 15, 2015, UTHealth was notified by DSHS that the renewed license would have a license condition imposed to complete the decommissioning process.

The cyclotron vault has a footprint of approximately 1,080 ft². The floor, walls and ceiling are constructed of rebar reinforced concrete. The north and east walls are 6-feet thick and the south and west walls are 8-feet thick. Access to the vault is through a movable door at the southeast corner. An overview of the cyclotron vault is provided in Figure 1.

1132-REP-001, Rev. 0 October 2017 Page 6 of 18

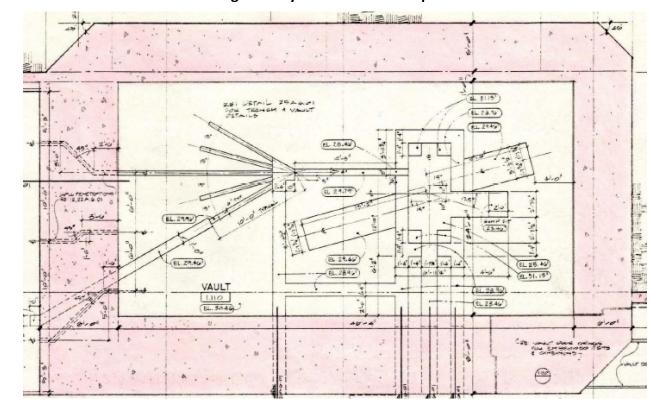


Figure 1: Cyclotron Vault Floorplan

4. RELEASE CRITERION

Radiological requirements for license termination are described in 25 Texas Administrative Code §289.202(ddd)(1)(D)(2), Radiological requirements for unrestricted use, which states that a site will be considered acceptable for unrestricted release if the residual radioactivity that is distinguishable from background radiation results in a total effective dose equivalent (TEDE) to an average member of the critical group that does not exceed 25 mrem (0.25 mSv) per year, including that from groundwater sources of drinking water, and the residual radioactivity has been reduced to levels that are as low as reasonably achievable (ALARA). Determination of the levels that are ALARA shall take into account consideration of any detriments, such as deaths from transportation accidents, expected to potentially result from decontamination and waste disposal.

5. CHARACTERIZATION SURVEY PROCEDURES

To aid in remediation planning and development of a Decommissioning Plan, radiological investigations were performed consisting of: gamma scans, discrete gamma measurements, Liquid Scintillation Counter (LSC) smears, beta-gamma smears, and concrete core samples. The

1132-REP-001, Rev. 0 October 2017 Page 7 of 18 objective of the sampling was to determine the three-dimensional extent to which the vault surfaces were impacted and that may exceed the DSHS release criterion.

Gamma scans were conducted on all accessible interior surfaces of the cyclotron vault with a Ludlum 2221 survey instrument coupled to a shielded Ludlum 44-10 2" x 2" Sodium Iodide (NaI) detector. The scan was performed by passing the detector close to the surface at a speed of 0.5 meters per second. As the detector was moved across the surfaces of the vault, the only discernable increases in count rates were from items and equipment in the vault. Since it was difficult to identify elevated locations during the scan surveys, even when moving loose equipment, it was determined that contact static gamma measurements using the shielded NaI detector would provide better data for selection of concrete core sampling locations.

Static gamma measurements (on contact), beta-gamma smears, and LSC smears were taken at the intersections of a one meter systematic grid system that was marked onto the vault interior surfaces. Accessible locations on the ceiling were approximated relative to the floor grid. The grid system was documented on scaled drawings provided in Attachment 1. Gamma background measurements were performed outside the cyclotron vault door on the floor. Ten one-minute counts were taken and used to determine the average gamma background of 1,637 counts per minute (cpm).

One-minute static gamma measurements were collected with the NaI detector at each 1-meter grid intersection. Locations were identified by the surface and numbered location. The surfaces were floor (F), ceiling (C), east wall (E), west wall (W), north wall (N), south wall (S) and Pit (P). For example, location 26 on the floor was given the ID F26; location 13 on the east wall was given the ID E13, etc. The sample IDs with a "D" following the location number (e.g., N17D) are duplicate samples. The measurements were collected on contact with the surface. Since the vault still contained equipment that could not be moved easily, several locations were not accessible for survey. These included F36, F37, F67, F68, S8, E13, C50, and C60,

Following a careful examination of the gamma static measurements, Ameriphysics determined locations for concrete core sampling based on either elevated static gamma measurements or proximity to the cyclotron and the target array. Thirty (30) separate concrete core sample locations were chosen. Cores samples were performed to a 15.5 inches (40 cm) depth at locations exhibiting the highest NaI count rates. Depths were less at lower count rate locations. The sample locations collected are provided in Table 5-1.

The core samples were moved to a low background area and separated into six inch (15 cm) sections. One-minute static counts were performed on contact with a NaI detector for each 3 inche (7.5 cm) increments and recorded. The net count rates are summarized in Table 5-1.

Table 5-1: Concrete Core Sample Locations and

Net One-Minute Nal Static Count Rates on Core Samples

		Net Readings in Counts per Minute					
	0-3	3-6	6-9	9-12	12-15.5		
Location	inches	inches	inches	inches	inches		
	(0-7.5 cm)	(7.5-15 cm)	(15-22.5 cm)	(22.5-30 cm)	(30-40 cm)		
F16	380	777	562	583	-		
F18	326	599	652	592	348		
F20	297	408	387	390	317		
F25	114	209	257	265	-		
F46	488	635	628	760	471		
F51	1202	1142	1070	899	614		
F52	185	307	377	346	-		
F56	249	294	423	348	-		
F72	394	500	545	480	-		
F76	320	474	471	491	-		
F80	225	482	572	445	449		
C46	242	438	-	-	-		
C52	270	380	-	i	-		
W3	581	819	-	-	-		
W5	413	525	-	i	-		
W11	405	541	446	371	-		
W17	465	696	-	i	-		
W19	623	563	-	i	-		
E2	80	245	268	-	-		
E4	13	66	-	-	-		
E9	-55	70	-8	41	134		
E17	22	152	-	-	-		
N17	197	343	-	-	-		
N20	245	416	-	-	-		
N23	51	161	274	211	-		
N30	138	412	-	-	-		
S19	95	369	207	276	-		
S21	256	361	-	-	-		
S26	372	669	525	309	-		
S40	339	506	-	-	-		

The contact NaI readings on the vault surfaces and the contact NaI readings on the actual core samples were used to determine which core sections were submitted for analysis. The samples that are **bolded** in Table 5-1 were sent for analysis via gamma spectroscopy at GEL Laboratories in Charleston, SC. GEL Laboratories has experience preparing and analyzing concrete from cyclotron facilities. Moreover, since the library they use was developed with the help of our cyclotron-experienced Certified Health Physicist (CHP), the possibility of drawing incorrect characterization decisions because of laboratory error or emission is minimized. The laboratory sample report is provided in Attachment 2. Sample custody was maintained at all times using a chain of custody form that accompanied the samples from collection to analysis.

Based on our experience on other projects, certain hard to detect radionuclides may be present within the activated concrete. Analyses for the hard-to-detect radionuclides (H-3 and Fe-55) were performed on 10% of the total number of samples (4 samples). These were selected based on the highest 2" x 2" NaI detector readings (vault surfaces) on core samples F51, W3, W17, and W19.

Removable contamination measurements (smears) were collected at each grid intersection. For each sample, an area of approximately 100 cm² was wiped. These samples were counted onsite with a Ludlum 3030 coupled to a Ludlum 43-10-1. LSC smears were also taken at each location and were counted on UTHealth's liquid scintillation counter. LSC results can be found in Attachment 4.

The minimum detectable concentration (MDC) in disintegrations per minute (dpm) per 100 cm² at a 95% confidence level for the instrument measuring removable beta/gamma contamination was calculated using the following equation, which is from NUREG-1507, "Minimum Detectable Concentrations With Typical Radiation Survey Instruments for Various Contaminants and Field Conditions", Table 3.1 (Strom & Stansbury, 1992):

$$MDC_{smear} = \frac{3 + 3.29\sqrt{B_r \cdot t_s \cdot (1 + \frac{t_s}{t_b})}}{t_s \cdot E \cdot \frac{A}{100cm^2}}$$
 135 dpm/100 cm^2 =
$$\frac{3 + 3.29\sqrt{56 \cdot 1 \cdot (1 + \frac{1}{1})}}{1 \cdot 0.28 \cdot \frac{100}{100cm^2}}$$

Where:

*MDC*_{smear} = 135 = minimum detectable concentration level in dpm/smear

 $B_r = 56$ = background count rate in cpm

 $t_b = 1$ = background count time in minutes

 $t_s = 1$ = sample count time in minutes

 $E = 0.28 = 4\pi$ instrument efficiency for radionuclide emission of interest

A = 100 = physical area of the smear in cm²

The UTHealth LSC counter's MDC is reported on each printout. The reported MDC values ranged between 40-42 dpm/smear. The following equation is used to determine the MDC for the LSC removable contamination measurements:

$$MDC_{smear} = \frac{2.71 + 4.75\sqrt{Background\{cpm\}}}{Efficiency}$$

The background value used in the calculation is the channel C value which is the counts from the entire spectrum (0-2000 keV). The efficiency used in the calculations is H-3 efficiency on an unquenched H-3 calibration standard.

The UTHealth action level in cpm for LSC removable contamination is determined from the following equation:

$$Action_Level = Background + MDA \times Efficiency$$

5.1. Survey Instrumentation

Based on potential contaminants, their associated radiations, and the types of residual contamination categories to be evaluated, the detection sensitivities of various instruments and techniques were evaluated for use. Instruments were evaluated for use during surface scans, discrete measurements, and analysis of removable contamination wipes.

The instrumentation used for the characterization surveys is summarized in the following tables. Table 5-2 lists the standard features of each instrument such as detector area and efficiency. Table 5-3 lists the actual operational parameters used such as scan rate, count time, and the associated Minimum Detectable Concentration (MDC).

Table 5-2: Instrumentation Specifications

Detector Model	Detector Serial Number	Detector Type	Detector Area	Meter Model	Meter Serial Number	Window Thickness	Typical Total Efficiency
Ludlum 44-10	190200	Gamma Scintillation	2" x 2" Nal	Ludlum 2221	PR135860	N/A	~675 cpm/µrem/hr
Ludlum 44-10	196085	Gamma Scintillation	2" x 2" Nal	Ludlum 2221	PR181829	N/A	~675 cpm/µrem/hr
Ludlum 43-10-1	PR337587	Alpha/Beta Scintillation	100 cm ²	Ludlum 3030	328277	0.4 mg/cm ²	28% – Beta
Tri-Carb 4900TR	SGLO3415 0058	Liquid Scintillation	100 cm ²	Tri-Carb 4900TR	SGLO3415 0058	N/A	62% - H-3

Table 5-3: Instrument Operating Parameters and Sensitivities

Measurement Type	Detector Model	Meter Model	Scan Rate	Count Time	Background (cpm)	MDC
Gamma Scans	44-10 190200	Ludlum 2221	0.5 m/sec.	N/A	1,637	~1.5 pCi/g
Gamma Scans	44-10 196085	Ludlum 2221	0.5 m/sec.	N/A	1,648	~1.5 pCi/g
Removable Beta Activity	Ludlum 43-10-1	Ludlum 3030	N/A	60 sec.	56 – Beta	135 dpm/100cm ²
Removable H-3/C-14 Activity	Tri-Carb 4900TR	Tri-Carb 4900TR	N/A	60 sec.	22-25	40-42 dpm/100cm ²

These instruments are not equipped to distinguish between radionuclides. Where radionuclidespecific results were needed, samples were obtained and sent offsite for gamma spectroscopic analysis.

5.2. Instrument Calibration

Laboratory and portable field instruments are calibrated at least annually with National Institute of Standards and Technology (NIST) traceable sources and to radiation emission types and energies that provide detection capabilities similar to the nuclides of concern.

5.3. Daily Response Checks

For radiological instruments operated by Ameriphysics, a reference source was measured prior to use each day. The result is accurate if it fell within ±20% of originally determined values. This is consistent with the guidance in Section 6.5.4 of MARSSIM, Instrument Calibration. Background readings were taken as part of the daily response checks and compared with the acceptance range for instrument and site conditions determined during instrument set up in accordance with Ameriphysics Survey Instrument Procedure, RCP 4-3. All instrument successfully passed their daily response checks during the course of the project.

The LSC counter was operated by UTHealth personnel according to their procedures. The system is normalized daily using its SNC protocol.

5.4. Data Validation

Field data was reviewed and validated to ensure:

 Completeness of forms and that the type of survey was correctly assigned to the survey unit.

1132-REP-001, Rev. 0 October 2017 Page 12 of 18

- The MDCs for measurements meet the established Data Quality Objectives (DQOs); independent calculations are performed for a representative sample of data sheets and survey areas.
- Instrument calibrations and daily functional checks were performed accurately and at the required frequency.
- QC samples were collected at the frequency prescribed in the Quality Assurance Project Plan (QAPP).
- Duplicate sample results were within 50% relative percent difference of the original sample.
- Chain of custody was maintained for all samples that were not controlled by the survey technician until the analysis is performed.

6. DATA INTERPRETATION

Characterization field survey data is provided in Attachment 1. The static gamma measurement results are reported in units of net cpm. These results were used along with the static Nal counts on the concrete core sections to determine which core samples were sent to the laboratory for gamma spectroscopy. Removable beta measurements at each location are reported in dpm/100 cm².

All concrete core samples were transferred under chain of custody to GEL Laboratories. The sample results returned by the laboratory are provided in Attachment 2. The results of the locations with the highest activities and second highest activities were used in RESRAD-BUILD modelling to compare to the release criterion of 25 mrem/yr which is discussed in further detail in Section 8.

7. FINDINGS AND RESULTS

The results of the characterization survey for the UTHealth MC-40 Cyclotron Vault are discussed in the following sections.

7.1. Explanation of Data Presentation

Attachment 1 of this report provides the field characterization survey results for the cyclotron vault floor, ceiling, walls, and pit. The survey results include:

- 1. Survey Instruction Sheets
- 2. General survey requirements
- 3. Instrument requirements with associated MDCs, count times and scan rates
- 4. Survey Data Results Sheets

- 5. Survey Maps
 - a. Overview maps detailing survey locations
 - b. Survey sub-unit maps with additional sample location information, as needed
- 6. Signatures of Data Collector and Reviewer

7.2. Surface Scans

Surface scans were performed on 100% of accessible surfaces to identify areas of elevated activity. The scan surveys did not indicate any areas that required any additional investigation other than the planned static measurements. However, the count rates did increase slightly on the floors and walls nearest the target array on the west side of the vault. There was significant interference in the scan readings due to the cyclotron, beam lines, target array, and various activated material in the vault.

7.3. Surface Activity Measurements

Static gamma measurements were taken with a shielded 2" x 2" NaI detector on the vault surfaces (floor, walls and ceiling). These were collected on contact with the surface at each intersection of a one-meter grid system. Even though a shielded NaI detector was used, there was some interference with the readings due to the cyclotron, target array, and other activated materials that remained in the vault when the measurements were collected.

Removable contamination measurements were collected at each accessible grid intersection. All beta/gamma removable contamination results were less than the MDC of 135 dpm/100cm² and are provided in Attachment 1. All LSC results were less than action levels determined by UTHealth except the initial count on sample C93. The initial result for sample C93 was 49 cpm in channel C and the action level was 47 cpm. Sample C93 was recounted and the result was 24 cpm compared to an action level of 47 cpm. The LSC results are provided in Attachment 4.

7.4. Radionuclide Concentrations in Samples

The radionuclides found in concrete core sample results were H-3, Co-60, Eu-152, and Eu-154.

The sample results are summarized in Table 7-1. Note that the samples ID includes the depth of the sample in inches. For example. F16 (1-6) is the sample collected at location F16 to a depth of 6 inches (15 cm).

Table 7-1: Core Sample Results

	Concentration in pCi/g for				
		Radionuc	lides Dete	cted	
Location ID	H-3	Co-60	Eu-152	Eu-154	
F16 (1-6)	ND	0.592	8.91	ND	
F18 (1-6)	ND	0.547	8.49	0.523	
F20 (1-6)	ND	0.603	7.01	ND	
F25 (1-6)	ND	0.199	3.27	ND	
F46 (1-6)	ND	0.544	7.2	0.759	
F46 (7-12)	ND	0.508	5.42	0.382	
F51 (1-6)	5.19	1.22	16.3	0.847	
F51 (7-12)	ND	1.10	13.8	1.22	
F51 (13-16)	ND	0.768	9.67	0.783	
F52 (1-6)	ND	0.268	4.56	ND	
F56 (1-6)	ND	0.192	3.1	ND	
F72 (1-6)	ND	0.472	5.25	ND	
F72D (1-6)	ND	0.531	6.46	0.432	
F76 (1-6)	ND	0.335	5.02	ND	
F80 (1-6)	ND	0.412	4.65	ND	
C46 (1-6)	ND	0.484	6.21	ND	
C52 (1-6)	ND	0.469	3.71	ND	
W3 (1-6)	ND	0.750	6.56	ND	
W5 (1-6)	ND	0.440	4.26	ND	
W5D (1-6)	ND	0.717	3.83	0.439	
W11 (1-6)	ND	0.524	5.34	ND	
W11D (1-6)	ND	0.713	5.13	0.244	
W17 (1-6)	5.28	0.901	6.90	ND	
W19 (1-6)	ND	0.766	4.37	ND	
E2 (1-6)	ND	0.412	2.83	ND	
E4 (1-6)	ND	0.373	2.48	ND	
E9 (1-6)	ND	0.310	3.09	ND	
E17 (1-6)	ND	0.313	2.51	ND	
N17 (1-6)	ND	0.659	4.21	ND	
N17D (1-6)	ND	0.478	3.92	0.334	
N20 (1-6)	ND	0.616	4.63	ND	
N23 (1-6)	ND	0.436	2.78	0.222	
N23 (7-12)	ND	0.106	1.12	ND	
N30 (1-6)	ND	0.291	3.48	ND	
S19 (1-6)	ND	0.407	3.03	ND	
S21 (1-6)	ND	0.655	4.72	ND	
S26 (1-6)	ND	0.536	4.64	0.393	
S40 (1-6)	ND	0.765	5.40	0.473	

ND – Not detected above MDC.

7.5. Quality Control

Calculations were performed to determine the survey percent completeness and relative percent differences (RPD) for samples with results greater than five times MDC for static measurements and volumetric samples.

Percent completeness calculations were performed for static and removable measurements and all exceeded the 90% requirements. All volumetric samples that were planned were successfully collected and analyzed.

RPD calculations were all within 50%.

Laboratory data reports were reviewed and all quality control requirements specified in the QAPP were met.

8. COMPARISON OF RESULTS WITH GUIDELINES

All direct measurement results were evaluated to determine locations to be considered for remediation. Core sample results were reported in pCi/g and were compared directly to the release criterion of 25 mrem/yr. TEDE.

The samples analyzed from location F51 resulted in the highest activity concentrations (in pCi/g). Dose modeling software, RESRAD-BUILD (Argonne National Laboratory), V3.50, October 30, 2009 was run using the laboratory results from the most radioactive sample, the o-6 inch (0-15 cm), sample from location F51 (1132-F51 (1-6)). Other than the radionuclides and concentrations, default parameters were used. The RESRAD-BUILD report for this analysis is provided in Attachment 3. The dose resulting from this model is 41.9 mrem/yr. which is greater than the release criterion of 25 mrem/yr TEDE. The areal extent of the elevated activity can be bounded by the surrounding surface NaI readings. This results in approximately four square meters of area in which remediation may be required to meet the release criterion.

The sample with the second highest sample results was location F18. RESRAD-BUILD was run with the radionuclides and concentrations reported for this sample. The RESRAD-BUILD report for this analysis is provided in the second part of Attachment 3. The dose resulting from this model is 21.7 mrem/yr. which is less than the release criterion of 25 mrem/yr. TEDE. Since the balance of the sample locations have results that are less than those reported for location F18, it is safe to assume any required remediation of additional areas to meet the release criterion will be minor. Once the cyclotron and other components are removed, it will be easier to determine if any other areas of activation exceed the release criterion exist.

9. RECOMMENDED REMEDIATION OF VAULT SURFACES

As discussed in Section 8, approximately four square meters of surface area surrounding location F51 may require remediation to meet the release criterion. Based on the results from the 15-30 cm sample and the 30-40 cm sample at location F51, the depth of remediation for this location is estimated at 50 cm. The area surrounding location F51 appears to be the only area that would require remediation to meet the release criterion, but this assumption should be verified following removal of the cyclotron and other activated components.

There may be a need for some additional spot remediation in other areas that could not be properly characterized because of interference with scans and static readings from the cyclotron and other components still in the room.

This area surrounding location F51 would result in approximately 70 ft³ (in place volume) or 10,500 lbs. of activated concrete waste.

In addition, the cyclotron and other components will also need to be disposed of as radioactive waste. The MC-40 cyclotron is estimated to weigh approximately 130,000 lbs. (~255 ft³). The cyclotron beam lines, target array, and various other components are estimated at approximately 1,080 ft³. These are estimates only and should be verified/determined prior to shipment and disposal.

There are also used components and other activated material that reside in the vault. There are roughly 50 potentially activated lead bricks dispersed around the vault. Other waste found in cyclotron vault includes: four drums of concrete slurry from characterization concrete core samples, eleven 55-gallon drums of radioactive material (at least one of these contains lead), two 10-gallon drums, ten black trash bags of assorted waste, and an assortment of unpackaged radioactive material.

10. CONCLUSIONS

Based on the NaI surveys performed and the core sample results, it is evident that there is activation in most of the vault surfaces. However, most of the vault surfaces would be less than the release criterion of 25 mrem/yr when using RESRAD-BUILD. The exception is approximately four square meters of the concrete floor surrounding location F51. This location is right below the beam line as it exits the cyclotron.

11. REFERENCES

- 1. NUREG-1575, "Multi-Agency Radiation Survey and Site Investigation Manual" (MARSSIM)
- 2. NUREG-1505, "A Nonparametric Statistical Methodology for the Design and Analysis of Final Decommissioning Surveys"
- 3. NUREG-1507, "Minimum Detectable Concentrations with Typical Radiation Survey Instruments for Various Contaminants and Field Conditions"
- 4. NUREG-1757, Volume 2 "Consolidated NMSS Decommissioning Guidance"
- 5. 25 Texas Administrative Code §289.202(ddd)(1)(D)(2), Radiological requirements for unrestricted use

ATTACHMENT 1

Characterization Survey Package

Building: <u>Science Center</u> Survey Unit ID:	: <u>SU1</u> Page of
MARSSIM Classification: N/A	
Room Nos. Included in Survey Unit:	UT Health MC-40 Cyclotron Vault
Approv	vals
Prepared By:	
nA H	
Robbie Hansen/	9/7/2017
Print Name / Signature	Date
Reviewed Rv.	
Reviewed By:	
Tim Pratt/	9/7/2017
Print Name / Signature	Date
V	
Completion a	nd Review
Data Collected and/or Converted By:	
$A \cap M \cap M$	
Robbie Hansen/	9/16/2017
Print Name / Signature	Date
_	
Reviewed and Verified By:	
Tim Pratt/	10/24/2017
Tim Pratt/ Print Name / Signature	

Building: Science Center Survey Unit ID: SU1 Page of

MARSSIM Classification: N/A

Room Nos. Included in Survey Unit: UT Health MC-40 Cyclotron Vault

Radionuclides of Concern:

Ag-108m, Ag-110m, Cd-109, Co-56, Co-57, Co-58, Co-60, Cs-134, Eu-152, Eu-154, Eu-155, Fe-59, Mn-54, Na-22, Nb-95, Sb-124, Sc-46, & Zn-65

Release Limits (DCGLs)					
	Total Activity Limits	Removable Activity Limit	Limits Based On:		
Alpha	n/a	n/a	n/a		
Gamma	n/a	n/a	n/a		
Beta/Gamma	n/a	n/a	n/a		

Applicable Survey Unit Surfaces	% of Accessible Surface for Scan Surveys		
☑ Floors	□ 10% □ 25-100% ☑ 100%		
☑ Lower Walls	□ 10% □ 25-100% ☑ 100%		
☑ Upper Walls	□ 10% □ 25-100% ☑ 100%		
☑ Ceiling	□ 10% □ 25-100% ☑ 100%		
□ Structures (Interior and Exterior Surfaces)	□ 10% □ 25-100% □ 100%		

Required Survey Instrumentation	Measurement Type	Static Count Time:	Scan Rate	Efficiency Based On:
Ludlum 2221 / 44-10	Gamma	1 minute	1/2 meter/sec	Co-60
Ludlum 3030E / 43-10-1	Beta Removable Activity	1 minute	N/A	Beta Tc-99
Other: <u>(Specify)</u>	N/A	N/A	N/A	N/A

Building: <u>Science Center</u> Survey Unit ID: <u>SU1</u> Page of

MARSSIM Classification: N/A

Room Nos. Included in Survey Unit: UT Health MC-40 Cyclotron Vault

Survey Instru	ctions
1)	Judgmentally select an origin for each surface area to surveyed. Origin selection should be chosen to correspond with the location of the cyclotron in relation to that surface. For each surface, lay out a one-meter grid system.
2)	For each surface (floor, wall, or ceiling), mark the grid intersections on a scaled drawing.
3)	Perform the required scan surveys at the rate prescribed on the previous page. Document the performance of the scan survey on the attached survey maps using markings and legends as necessary to allow the reviewer enough information to verify that sufficient area has been covered
4)	Collect static measurements for gross gamma at each identified grid intersection (close to the surface). Collect wipe samples for gross beta/gamma and for Liquid Scintillation Counter at each gamma sample location. Document the results on the associated data results sheets. Additional measurements may be taken in suspect areas at the discretion of the Project Manager.
5)	Collect core samples at locations determined by the Cerified Health Physicist and the Radiation Safety Officer. Separate samples into 6 inch long segments. Before shipping, move 6-inch segments to a low background area and perform one-minute static counts on contact.
6)	Collect 5% duplicate static measurements for gross gamma. Collect 5% duplicate wipe samples for gross beta/gamma. Document the results on the associated data results sheets.
7)	Notify the Project Manager of any elevated activity is determined during static measurements or applicable removable contamination measurements.
8)	Ensure that all package information is completed and signed prior to turning in this survey package to the Project Manager for review.

Building:	Science Center		Survey Unit ID:	SU1	Page	of	
Marssim Class	ification:	N/A					

Room Nos. Included in Survey	Unit: <u>UT He</u>	alth MC-40 Cyclotr	on Vault	

Project Name:		Project Numb	er:			Survey Numbe	er:		Date	9/15/	/2017
UT Health Science Cent	ter Vault		11	32			1		Time	: 17:	:00
Instrument / Detector	Seria	l Number	Cal. Due Date	Total Efficiency	Background (cpm)	Probe Area	Surveyor	Robbie	e Hansen	/ Tom Han	isen III
udlum 3030 / Ludlum 43-10-1	328277	/ PR337587	3/3/2018	0.2828	46	100	Signature:	1	11/	<u>7</u>	
udlum 2221 / Ludlum 44-10	190200	/ PR135860	12/7/2017	n/a	1637	n/a		1/2	1	1	
udlum 2221 / Ludlum 44-10	196085	/ PR196085	12/7/2017	n/a	1648	n/a	Reviewer:		Tim Pratt		
\leftarrow	_			_							
		N,	/A			\rightarrow	Signature:	7:			
				Total Activ	ity Results			1 (Removable A	activity Results	
Location Code			Gamma		Alp	ha	Beta-G	ìamma			
Eocation Code		Gross Counts	BKG Counts	Net DPM/	Gross Counts	BKG Counts	Net CPM	Gross Counts	Net DPM/	Gross Counts	Net DPM 100 cm ²
N1		n/a	n/a	n/a	8188	1637	6551	n/a	n/a	47	4
N2		n/a	n/a	n/a	9844	1637	8207	n/a	n/a	56	35
N3		n/a	n/a	n/a	9144	1637	7507	n/a	n/a	39	-25
N4		n/a	n/a	n/a	9050	1637	7413	n/a	n/a	36	-35
N5		n/a	n/a	n/a	9310	1637	7673	n/a	n/a	44	-7
N6		n/a	n/a	n/a	9169	1637	7532	n/a	n/a	47	4
N7		n/a	n/a	n/a	9957	1637	8320	n/a	n/a	51	18
N8		n/a	n/a	n/a	10676	1637	9039	n/a	n/a	35	-39
N9		n/a	n/a	n/a	11066	1637	9429	n/a	n/a	50	14
N10		n/a	n/a	n/a	9295	1637	7658	n/a	n/a	52	21
N11		n/a	n/a	n/a	7697	1637	6060	n/a	n/a	41	-18

Building: Survey Unit ID: <u>SU1</u> Page Science Center of

			Total Activ	vity Results				Removable A	ctivity Results	
Location Code		Alpha			Gamma		Alp	ha	Beta-Gamma	
	Gross Counts	BKG Counts	Net DPM/	Gross Counts	BKG Counts	Net CPM	Gross Counts	Net DPM/	Gross Counts	100 cm ²
N12	n/a	n/a	n/a	7230	1637	5593	n/a	n/a	55	32
N13	n/a	n/a	n/a	6445	1637	4808	n/a	n/a	50	14
N14	n/a	n/a	n/a	7912	1637	6275	n/a	n/a	43	-11
N15	n/a	n/a	n/a	8830	1637	7193	n/a	n/a	42	-14
N16	n/a	n/a	n/a	8468	1637	6831	n/a	n/a	56	35
N17	n/a	n/a	n/a	8762	1637	7125	n/a	n/a	44	-7
N18	n/a	n/a	n/a	8844	1637	7207	n/a	n/a	42	-14
N19	n/a	n/a	n/a	9391	1637	7754	n/a	n/a	54	28
N20	n/a	n/a	n/a	10848	1637	9211	n/a	n/a	51	18
N21	n/a	n/a	n/a	10322	1637	8685	n/a	n/a	49	11
N22	n/a	n/a	n/a	9706	1637	8069	n/a	n/a	54	28
N23	n/a	n/a	n/a	8587	1637	6950	n/a	n/a	45	-4
N24	n/a	n/a	n/a	6295	1637	4658	n/a	n/a	52	21
N25	n/a	n/a	n/a	6542	1637	4905	n/a	n/a	45	-4
N26	n/a	n/a	n/a	6516	1637	4879	n/a	n/a	52	21
N27	n/a	n/a	n/a	8751	1637	7114	n/a	n/a	45	-4
N28	n/a	n/a	n/a	9581	1637	7944	n/a	n/a	59	46
N29	n/a	n/a	n/a	10312	1637	8675	n/a	n/a	56	35
N30	n/a	n/a	n/a	10900	1637	9263	n/a	n/a	34	-42
N31	n/a	n/a	n/a	10713	1637	9076	n/a	n/a	64	64
N32	n/a	n/a	n/a	10516	1637	8879	n/a	n/a	51	18
N33	n/a	n/a	n/a	11271	1637	9634	n/a	n/a	56	35
N34	n/a	n/a	n/a	11367	1637	9730	n/a	n/a	43	-11
N35	n/a	n/a	n/a	10094	1637	8457	n/a	n/a	49	11
N36	n/a	n/a	n/a	8397	1637	6760	n/a	n/a	54	28

Building: Survey Unit ID: <u>SU1</u> Page Science Center of

			Total Activ	vity Results				Removable A	ctivity Results	
Location Code		Alpha			Gamma		Alp	ha	Beta-G	
	Gross Counts	BKG Counts	Net DPM/	Gross Counts	BKG Counts	Net CPM	Gross Counts	Net DPM/	Gross Counts	100 cm ²
N37	n/a	n/a	n/a	7250	1637	5613	n/a	n/a	50	14
N38	n/a	n/a	n/a	6618	1637	4981	n/a	n/a	57	39
N39	n/a	n/a	n/a	6203	1637	4566	n/a	n/a	57	39
N40	n/a	n/a	n/a	7751	1637	6114	n/a	n/a	45	-4
S1	n/a	n/a	n/a	7105	1637	5468	n/a	n/a	41	-18
S2	n/a	n/a	n/a	7066	1637	5429	n/a	n/a	47	4
S3	n/a	n/a	n/a	5631	1637	3994	n/a	n/a	35	-39
S4	n/a	n/a	n/a	7107	1637	5470	n/a	n/a	34	-42
S5	n/a	n/a	n/a	8508	1637	6871	n/a	n/a	42	-14
S6	n/a	n/a	n/a	10691	1637	9054	n/a	n/a	45	-4
S7	n/a	n/a	n/a	19190	1637	17553	n/a	n/a	43	-11
S8	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
S9	n/a	n/a	n/a	14000	1637	12363	n/a	n/a	45	-4
S10	n/a	n/a	n/a	12073	1637	10436	n/a	n/a	47	4
S11	n/a	n/a	n/a	12798	1637	11161	n/a	n/a	41	-18
S12	n/a	n/a	n/a	10770	1637	9133	n/a	n/a	47	4
S13	n/a	n/a	n/a	10522	1637	8885	n/a	n/a	42	-14
S14	n/a	n/a	n/a	8496	1637	6859	n/a	n/a	37	-32
S15	n/a	n/a	n/a	8112	1637	6475	n/a	n/a	40	-21
S16	n/a	n/a	n/a	7906	1637	6269	n/a	n/a	39	-25
S17	n/a	n/a	n/a	5274	1637	3637	n/a	n/a	48	7
S18	n/a	n/a	n/a	7251	1637	5614	n/a	n/a	59	46
S19	n/a	n/a	n/a	9605	1637	7968	n/a	n/a	43	-11
S20	n/a	n/a	n/a	10748	1637	9111	n/a	n/a	51	18
S21	n/a	n/a	n/a	15501	1637	13864	n/a	n/a	43	-11

Building: Survey Unit ID: <u>SU1</u> Science Center of Page

Room Nos. Included in S	I	<u>OT TICUI</u>			OII Vaai	<u>-</u>	I			
			Total Activ	vity Results				Removable A	Activity Results	
Location Code		Alpha			Gamma		Alp		Beta-G	amma
	Gross Counts	BKG Counts	Net DPM/	Gross Counts	BKG Counts	Net CPM	Gross Counts	Net DPM/ 100 cm ²	Gross Counts	100 cm ²
S22	n/a	n/a	n/a	24287	1637	22650	n/a	n/a	47	4
S23	n/a	n/a	n/a	12922	1637	11285	n/a	n/a	38	-28
S24	n/a	n/a	n/a	11017	1637	9380	n/a	n/a	39	-25
S25	n/a	n/a	n/a	11001	1637	9364	n/a	n/a	44	-7
S26	n/a	n/a	n/a	12151	1637	10514	n/a	n/a	53	25
S27	n/a	n/a	n/a	12051	1637	10414	n/a	n/a	52	21
S28	n/a	n/a	n/a	8575	1637	6938	n/a	n/a	51	18
S29	n/a	n/a	n/a	8160	1637	6523	n/a	n/a	50	14
S30	n/a	n/a	n/a	8245	1637	6608	n/a	n/a	43	-11
S31	n/a	n/a	n/a	6640	1637	5003	n/a	n/a	61	53
S32	n/a	n/a	n/a	7457	1637	5820	n/a	n/a	36	-35
S33	n/a	n/a	n/a	8631	1637	6994	n/a	n/a	46	0
S34	n/a	n/a	n/a	10247	1637	8610	n/a	n/a	44	-7
S35	n/a	n/a	n/a	12112	1637	10475	n/a	n/a	45	-4
S36	n/a	n/a	n/a	12363	1637	10726	n/a	n/a	34	-42
S37	n/a	n/a	n/a	11810	1637	10173	n/a	n/a	48	7
S38	n/a	n/a	n/a	11890	1637	10253	n/a	n/a	49	11
\$39	n/a	n/a	n/a	12001	1637	10364	n/a	n/a	52	21
S40	n/a	n/a	n/a	12380	1637	10743	n/a	n/a	31	-53
S41	n/a	n/a	n/a	11653	1637	10016	n/a	n/a	54	28
S42	n/a	n/a	n/a	12113	1637	10476	n/a	n/a	49	11
S43	n/a	n/a	n/a	3816	1637	2179	n/a	n/a	46	0
S44	n/a	n/a	n/a	4577	1637	2940	n/a	n/a	47	4
S45	n/a	n/a	n/a	9413	1637	7776	n/a	n/a	46	0
W1	n/a	n/a	n/a	8350	1637	6713	n/a	n/a	48	7

Building: Survey Unit ID: <u>SU1</u> Science Center of Page

			Total Activ	vity Results				Removable A	activity Results	
Location Code		Alpha			Gamma		Alp	ha	Beta-Gamma	
	Gross Counts	BKG Counts	Net DPM/ 100 cm ²	Gross Counts	BKG Counts	Net CPM	Gross Counts	Net DPM/	Gross Counts	100 cm ²
W2	n/a	n/a	n/a	9053	1637	7416	n/a	n/a	45	-4
W3	n/a	n/a	n/a	10558	1637	8921	n/a	n/a	51	18
W4	n/a	n/a	n/a	12358	1637	10721	n/a	n/a	39	-25
W5	n/a	n/a	n/a	9430	1637	7793	n/a	n/a	47	4
W6	n/a	n/a	n/a	8575	1637	6938	n/a	n/a	43	-11
W7	n/a	n/a	n/a	7410	1637	5773	n/a	n/a	41	-18
W8	n/a	n/a	n/a	8541	1637	6904	n/a	n/a	43	-11
W9	n/a	n/a	n/a	9451	1637	7814	n/a	n/a	43	-11
W10	n/a	n/a	n/a	9971	1637	8334	n/a	n/a	35	-39
W11	n/a	n/a	n/a	11036	1637	9399	n/a	n/a	41	-18
W12	n/a	n/a	n/a	8894	1637	7257	n/a	n/a	44	-7
W13	n/a	n/a	n/a	8195	1637	6558	n/a	n/a	35	-39
W14	n/a	n/a	n/a	7499	1637	5862	n/a	n/a	55	32
W15	n/a	n/a	n/a	9873	1637	8236	n/a	n/a	41	-18
W16	n/a	n/a	n/a	10821	1637	9184	n/a	n/a	43	-11
W17	n/a	n/a	n/a	12957	1637	11320	n/a	n/a	47	4
W18	n/a	n/a	n/a	12366	1637	10729	n/a	n/a	46	0
W19	n/a	n/a	n/a	11049	1637	9412	n/a	n/a	36	-35
W20	n/a	n/a	n/a	9209	1637	7572	n/a	n/a	47	4
W21	n/a	n/a	n/a	8471	1637	6834	n/a	n/a	46	0
W22	n/a	n/a	n/a	9295	1637	7658	n/a	n/a	54	28
W23	n/a	n/a	n/a	9800	1637	8163	n/a	n/a	49	11
W24	n/a	n/a	n/a	8854	1637	7217	n/a	n/a	62	57
W25	n/a	n/a	n/a	8094	1637	6457	n/a	n/a	66	71
E1	n/a	n/a	n/a	9607	1637	7970	n/a	n/a	33	-46

Building: Survey Unit ID: <u>SU1</u> Science Center of Page

Room Nos. Included in S	-			rity Results		_		Removable A	Activity Results	
Location Code		Alpha			Gamma		Alp		Beta-Gamma	
Estation code	Gross Counts		Net DPM/ 100 cm ²	Gross Counts		Net CPM	Gross Counts	Net DPM/	Gross Counts	100 cm ²
E2	n/a	n/a	n/a	9845	1637	8208	n/a	n/a	51	18
E3	n/a	n/a	n/a	7819	1637	6182	n/a	n/a	39	-25
E4	n/a	n/a	n/a	8524	1637	6887	n/a	n/a	48	7
E5	n/a	n/a	n/a	6631	1637	4994	n/a	n/a	37	-32
E6	n/a	n/a	n/a	5796	1637	4159	n/a	n/a	51	18
E7	n/a	n/a	n/a	11501	1637	9864	n/a	n/a	48	7
E8	n/a	n/a	n/a	7702	1637	6065	n/a	n/a	31	-53
E9	n/a	n/a	n/a	7616	1637	5979	n/a	n/a	47	4
E10	n/a	n/a	n/a	9186	1637	7549	n/a	n/a	39	-25
E11	n/a	n/a	n/a	10042	1637	8405	n/a	n/a	46	0
E12	n/a	n/a	n/a	8570	1637	6933	n/a	n/a	49	11
E13	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	48	7
E14	n/a	n/a	n/a	8295	1637	6658	n/a	n/a	49	11
E15	n/a	n/a	n/a	8872	1637	7235	n/a	n/a	36	-35
E16	n/a	n/a	n/a	7404	1637	5767	n/a	n/a	44	-7
E17	n/a	n/a	n/a	7994	1637	6357	n/a	n/a	50	14
E18	n/a	n/a	n/a	6903	1637	5266	n/a	n/a	34	-42
E19	n/a	n/a	n/a	4819	1637	3182	n/a	n/a	50	14
C1	n/a	n/a	n/a	9887	1637	8250	n/a	n/a	43	-11
C2	n/a	n/a	n/a	10484	1637	8847	n/a	n/a	46	0
C3	n/a	n/a	n/a	10607	1637	8970	n/a	n/a	49	11
C4	n/a	n/a	n/a	10432	1637	8795	n/a	n/a	46	0
C5	n/a	n/a	n/a	11073	1637	9436	n/a	n/a	39	-25
C6	n/a	n/a	n/a	9938	1637	8301	n/a	n/a	38	-28
C7	n/a	n/a	n/a	9713	1637	8076	n/a	n/a	45	-4

Building: Survey Unit ID: <u>SU1</u> Science Center of Page

Room Nos. Included in S	urvey Onit:	от пеат			on vaui	<u>L</u>				
			Total Activ	ity Results				Removable A	Activity Results	
Location Code		Alpha			Gamma		Alp	ha	Beta-G	
	Gross Counts	BKG Counts	Net DPM/	Gross Counts	BKG Counts	Net CPM	Gross Counts	Net DPM/ 100 cm ²	Gross Counts	100 cm ²
C8	n/a	n/a	n/a	9755	1637	8118	n/a	n/a	40	-21
С9	n/a	n/a	n/a	8861	1637	7224	n/a	n/a	53	25
C10	n/a	n/a	n/a	7166	1648	5518	n/a	n/a	45	-4
C11	n/a	n/a	n/a	6499	1648	4851	n/a	n/a	39	-25
C12	n/a	n/a	n/a	6312	1648	4664	n/a	n/a	52	21
C13	n/a	n/a	n/a	5978	1637	4341	n/a	n/a	44	-7
C14	n/a	n/a	n/a	5145	1637	3508	n/a	n/a	50	14
C15	n/a	n/a	n/a	10870	1637	9233	n/a	n/a	55	32
C16	n/a	n/a	n/a	11396	1637	9759	n/a	n/a	43	-11
C17	n/a	n/a	n/a	11471	1637	9834	n/a	n/a	47	4
C18	n/a	n/a	n/a	11478	1637	9841	n/a	n/a	38	-28
C19	n/a	n/a	n/a	10778	1637	9141	n/a	n/a	53	25
C20	n/a	n/a	n/a	11192	1637	9555	n/a	n/a	41	-18
C21	n/a	n/a	n/a	10812	1637	9175	n/a	n/a	35	-39
C22	n/a	n/a	n/a	11338	1637	9701	n/a	n/a	38	-28
C23	n/a	n/a	n/a	10016	1637	8379	n/a	n/a	43	-11
C24	n/a	n/a	n/a	6843	1648	5195	n/a	n/a	35	-39
C25	n/a	n/a	n/a	7024	1648	5376	n/a	n/a	39	-25
C26	n/a	n/a	n/a	7283	1648	5635	n/a	n/a	46	0
C27	n/a	n/a	n/a	6666	1637	5029	n/a	n/a	45	-4
C28	n/a	n/a	n/a	5922	1637	4285	n/a	n/a	33	-46
C29	n/a	n/a	n/a	10468	1637	8831	n/a	n/a	52	21
C30	n/a	n/a	n/a	12204	1637	10567	n/a	n/a	39	-25
C31	n/a	n/a	n/a	12427	1637	10790	n/a	n/a	47	4
C32	n/a	n/a	n/a	13485	1637	11848	n/a	n/a	44	-7

Building: Survey Unit ID: <u>SU1</u> Science Center of Page

Room Nos. Included in S	urvey Onit:	от пеат			on vaui	<u>L</u>				
			Total Activ	rity Results				Removable A	Activity Results	
Location Code		Alpha			Gamma		Alp	ha	Beta-Gamma	
	Gross Counts	BKG Counts	Net DPM/	Gross Counts	BKG Counts	Net CPM	Gross Counts	Net DPM/ 100 cm ²	Gross Counts	100 cm ²
C33	n/a	n/a	n/a	11726	1637	10089	n/a	n/a	38	-28
C34	n/a	n/a	n/a	11669	1637	10032	n/a	n/a	43	-11
C35	n/a	n/a	n/a	11535	1637	9898	n/a	n/a	43	-11
C36	n/a	n/a	n/a	12171	1637	10534	n/a	n/a	41	-18
C37	n/a	n/a	n/a	9287	1648	7639	n/a	n/a	51	18
C38	n/a	n/a	n/a	7366	1648	5718	n/a	n/a	40	-21
C39	n/a	n/a	n/a	7264	1648	5616	n/a	n/a	42	-14
C40	n/a	n/a	n/a	7871	1637	6234	n/a	n/a	46	0
C41	n/a	n/a	n/a	7211	1637	5574	n/a	n/a	41	-18
C42	n/a	n/a	n/a	5820	1637	4183	n/a	n/a	41	-18
C43	n/a	n/a	n/a	9952	1637	8315	n/a	n/a	44	-7
C44	n/a	n/a	n/a	11648	1637	10011	n/a	n/a	35	-39
C45	n/a	n/a	n/a	12866	1637	11229	n/a	n/a	53	25
C46	n/a	n/a	n/a	13003	1637	11366	n/a	n/a	52	21
C47	n/a	n/a	n/a	12626	1637	10989	n/a	n/a	47	4
C48	n/a	n/a	n/a	12919	1637	11282	n/a	n/a	47	4
C49	n/a	n/a	n/a	12794	1637	11157	n/a	n/a	40	-21
C50	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
C51	n/a	n/a	n/a	10971	1648	9323	n/a	n/a	38	-28
C52	n/a	n/a	n/a	7777	1648	6129	n/a	n/a	57	39
C53	n/a	n/a	n/a	7758	1648	6110	n/a	n/a	37	-32
C54	n/a	n/a	n/a	7583	1637	5946	n/a	n/a	41	-18
C55	n/a	n/a	n/a	7346	1637	5709	n/a	n/a	38	-28
C56	n/a	n/a	n/a	6187	1637	4550	n/a	n/a	43	-11
C57	n/a	n/a	n/a	10353	1637	8716	n/a	n/a	62	57

Building: Survey Unit ID: <u>SU1</u> Science Center of Page

Room Nos. Included in S	I	<u>OT HEAT</u>			Oli Vaul	<u>. </u>	I			
			Total Activ	rity Results				Removable A	Activity Results	
Location Code		Alpha			Gamma		Alp		Beta-G	
	Gross Counts	BKG Counts	Net DPM/	Gross Counts	BKG Counts	Net CPM	Gross Counts	Net DPM/ 100 cm ²	Gross Counts	100 cm ²
C58	n/a	n/a	n/a	10308	1637	8671	n/a	n/a	58	42
C59	n/a	n/a	n/a	11717	1637	10080	n/a	n/a	54	28
C60	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
C61	n/a	n/a	n/a	11584	1648	9936	n/a	n/a	45	-4
C62	n/a	n/a	n/a	11796	1648	10148	n/a	n/a	42	-14
C63	n/a	n/a	n/a	11519	1648	9871	n/a	n/a	43	-11
C64	n/a	n/a	n/a	11257	1648	9609	n/a	n/a	42	-14
C65	n/a	n/a	n/a	11222	1648	9574	n/a	n/a	33	-46
C66	n/a	n/a	n/a	7811	1648	6163	n/a	n/a	48	7
C67	n/a	n/a	n/a	6472	1648	4824	n/a	n/a	44	-7
C68	n/a	n/a	n/a	6607	1637	4970	n/a	n/a	35	-39
C69	n/a	n/a	n/a	6205	1637	4568	n/a	n/a	48	7
C70	n/a	n/a	n/a	5823	1637	4186	n/a	n/a	41	-18
C71	n/a	n/a	n/a	9009	1637	7372	n/a	n/a	49	11
C72	n/a	n/a	n/a	9632	1637	7995	n/a	n/a	58	42
C73	n/a	n/a	n/a	11130	1637	9493	n/a	n/a	37	-32
C74	n/a	n/a	n/a	11747	1637	10110	n/a	n/a	41	-18
C75	n/a	n/a	n/a	11299	1637	9662	n/a	n/a	31	-53
C76	n/a	n/a	n/a	12068	1637	10431	n/a	n/a	44	-7
C77	n/a	n/a	n/a	11855	1637	10218	n/a	n/a	46	0
C78	n/a	n/a	n/a	11822	1637	10185	n/a	n/a	46	0
C79	n/a	n/a	n/a	11186	1637	9549	n/a	n/a	43	-11
C80	n/a	n/a	n/a	8737	1637	7100	n/a	n/a	42	-14
C81	n/a	n/a	n/a	6664	1648	5016	n/a	n/a	36	-35
C82	n/a	n/a	n/a	6714	1637	5077	n/a	n/a	45	-4

Building: Survey Unit ID: <u>SU1</u> Science Center of Page

Room Nos. Included in S	urvey Unit:	<u>UT Heal</u>	th MC-4	<u> 0 Cycloti</u>	<u>t</u>					
			Total Activ	vity Results				Removable A	Activity Results	
Location Code		Alpha			Gamma		Alp	ha	Beta-Gamma	
	Gross Counts	BKG Counts	Net DPM/	Gross Counts	BKG Counts	Net CPM	Gross Counts	Net DPM/	Gross Counts	100 cm ²
C83	n/a	n/a	n/a	6557	1637	4920	n/a	n/a	42	-14
C84	n/a	n/a	n/a	5905	1637	4268	n/a	n/a	40	-21
C85	n/a	n/a	n/a	5599	1637	3962	n/a	n/a	47	4
C86	n/a	n/a	n/a	8282	1637	6645	n/a	n/a	58	42
C87	n/a	n/a	n/a	8574	1637	6937	n/a	n/a	46	0
C88	n/a	n/a	n/a	8978	1637	7341	n/a	n/a	43	-11
C89	n/a	n/a	n/a	9334	1637	7697	n/a	n/a	48	7
C90	n/a	n/a	n/a	9875	1637	8238	n/a	n/a	51	18
C91	n/a	n/a	n/a	9258	1637	7621	n/a	n/a	46	0
C92	n/a	n/a	n/a	10167	1637	8530	n/a	n/a	45	-4
C93	n/a	n/a	n/a	10346	1637	8709	n/a	n/a	34	-42
C94	n/a	n/a	n/a	8890	1637	7253	n/a	n/a	58	42
C95	n/a	n/a	n/a	7989	1637	6352	n/a	n/a	48	7
C96	n/a	n/a	n/a	6182	1637	4545	n/a	n/a	39	-25
C97	n/a	n/a	n/a	5833	1637	4196	n/a	n/a	48	7
C98	n/a	n/a	n/a	5629	1637	3992	n/a	n/a	50	14
F1	n/a	n/a	n/a	10172	1637	8535	n/a	n/a	43	-11
F2	n/a	n/a	n/a	11794	1637	10157	n/a	n/a	41	-18
F3	n/a	n/a	n/a	17226	1637	15589	n/a	n/a	54	28
F4	n/a	n/a	n/a	15173	1637	13536	n/a	n/a	38	-28
F5	n/a	n/a	n/a	14527	1637	12890	n/a	n/a	49	11
F6	n/a	n/a	n/a	14419	1637	12782	n/a	n/a	39	-25
F7	n/a	n/a	n/a	20712	1637	19075	n/a	n/a	52	21
F8	n/a	n/a	n/a	18635	1637	16998	n/a	n/a	47	4
F9	n/a	n/a	n/a	12811	1637	11174	n/a	n/a	37	-32

Building: Survey Unit ID: <u>SU1</u> Science Center Page of

om Nos. Included in S						_							
Location Code		Total Activity Results							Removable Activity Results				
	Alpha			Gamma			Alp	ha	Beta-Gamma				
	Gross Counts	BKG Counts	Net DPM/	Gross Counts	BKG Counts	Net CPM	Gross Counts	Net DPM/	Gross Counts	100 cm ²			
F10	n/a	n/a	n/a	8839	1637	7202	n/a	n/a	43	-11			
F11	n/a	n/a	n/a	7365	1637	5728	n/a	n/a	38	-28			
F12	n/a	n/a	n/a	7530	1637	5893	n/a	n/a	35	-39			
F13	n/a	n/a	n/a	8781	1637	7144	n/a	n/a	38	-28			
F14	n/a	n/a	n/a	6645	1637	5008	n/a	n/a	64	64			
F15	n/a	n/a	n/a	11973	1637	10336	n/a	n/a	65	67			
F16	n/a	n/a	n/a	14592	1637	12955	n/a	n/a	55	32			
F17	n/a	n/a	n/a	17286	1637	15649	n/a	n/a	60	50			
F18	n/a	n/a	n/a	17653	1637	16016	n/a	n/a	64	64			
F19	n/a	n/a	n/a	15113	1637	13476	n/a	n/a	55	32			
F20	n/a	n/a	n/a	15860	1637	14223	n/a	n/a	56	35			
F21	n/a	n/a	n/a	16694	1637	15057	n/a	n/a	59	46			
F22	n/a	n/a	n/a	19369	1637	17732	n/a	n/a	62	57			
F23	n/a	n/a	n/a	19119	1637	17482	n/a	n/a	61	53			
F24	n/a	n/a	n/a	11085	1637	9448	n/a	n/a	66	71			
F25	n/a	n/a	n/a	7714	1637	6077	n/a	n/a	47	4			
F26	n/a	n/a	n/a	11803	1637	10166	n/a	n/a	52	21			
F27	n/a	n/a	n/a	10383	1637	8746	n/a	n/a	52	21			
F28	n/a	n/a	n/a	7618	1637	5981	n/a	n/a	52	21			
F29	n/a	n/a	n/a	12682	1637	11045	n/a	n/a	47	4			
F30	n/a	n/a	n/a	17382	1637	15745	n/a	n/a	53	25			
F31	n/a	n/a	n/a	23273	1637	21636	n/a	n/a	54	28			
F32	n/a	n/a	n/a	22204	1637	20567	n/a	n/a	55	32			
F33	n/a	n/a	n/a	21063	1637	19426	n/a	n/a	62	57			
F34	n/a	n/a	n/a	18277	1637	16640	n/a	n/a	62	57			

Building: Survey Unit ID: <u>SU1</u> Science Center of Page _

	i	vey Unit: UT Health MC-40 Cyclotron Vault Total Activity Results							Removable Activity Results				
Location Code		Gamma			Alp		Beta-Gamma						
Location code	Gross Counts	Alpha BKG Counts	Net DPM/	Gross Counts		Net CPM	Gross Counts	Net DPM/	Gross Counts	100 cm ²			
F35	n/a	n/a	n/a	19529	1637	17892	n/a	n/a	51	18			
F36	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a			
F37	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a			
F38	n/a	n/a	n/a	11073	1637	9436	n/a	n/a	47	4			
F39	n/a	n/a	n/a	19283	1637	17646	n/a	n/a	49	11			
F40	n/a	n/a	n/a	13772	1637	12135	n/a	n/a	45	-4			
F41	n/a	n/a	n/a	9953	1637	8316	n/a	n/a	65	67			
F42	n/a	n/a	n/a	8249	1637	6612	n/a	n/a	40	-21			
F43	n/a	n/a	n/a	11455	1637	9818	n/a	n/a	50	14			
F44	n/a	n/a	n/a	13704	1637	12067	n/a	n/a	46	0			
F45	n/a	n/a	n/a	21605	1637	19968	n/a	n/a	46	0			
F46	n/a	n/a	n/a	25742	1637	24105	n/a	n/a	42	-14			
F47	n/a	n/a	n/a	25622	1637	23985	n/a	n/a	49	11			
F48	n/a	n/a	n/a	18284	1637	16647	n/a	n/a	43	-11			
F49	n/a	n/a	n/a	18563	1637	16926	n/a	n/a	40	-21			
F50	n/a	n/a	n/a	34225	1637	32588	n/a	n/a	44	-7			
F51	n/a	n/a	n/a	42536	1637	40899	n/a	n/a	46	0			
F52	n/a	n/a	n/a	12645	1637	11008	n/a	n/a	54	28			
F53	n/a	n/a	n/a	7960	1637	6323	n/a	n/a	39	-25			
F54	n/a	n/a	n/a	12685	1637	11048	n/a	n/a	46	0			
F55	n/a	n/a	n/a	11872	1637	10235	n/a	n/a	41	-18			
F56	n/a	n/a	n/a	8252	1637	6615	n/a	n/a	40	-21			
F57	n/a	n/a	n/a	10194	1637	8557	n/a	n/a	53	25			
F58	n/a	n/a	n/a	12325	1637	10688	n/a	n/a	40	-21			
F59	n/a	n/a	n/a	19632	1637	17995	n/a	n/a	59	46			

Building: Survey Unit ID: <u>SU1</u> Science Center of Page _

		Total Activity Results							Removable Activity Results				
Location Code	Alpha			Gamma			Alp	ha	Beta-Gamma				
	Gross Counts	BKG Counts	Net DPM/	Gross Counts	BKG Counts	Net CPM	Gross Counts	Net DPM/	Gross Counts	100 cm ²			
F60	n/a	n/a	n/a	42382	1637	40745	n/a	n/a	36	-35			
F61	n/a	n/a	n/a	26014	1637	24377	n/a	n/a	48	7			
F62	n/a	n/a	n/a	16618	1637	14981	n/a	n/a	40	-21			
F63	n/a	n/a	n/a	15114	1637	13477	n/a	n/a	46	0			
F64	n/a	n/a	n/a	21746	1637	20109	n/a	n/a	37	-32			
F65	n/a	n/a	n/a	33691	1637	32054	n/a	n/a	47	4			
F66	n/a	n/a	n/a	9049	1637	7412	n/a	n/a	47	4			
F67	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a			
F68	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a			
F69	n/a	n/a	n/a	9433	1637	7796	n/a	n/a	47	4			
F70	n/a	n/a	n/a	9431	1637	7794	n/a	n/a	48	7			
F71	n/a	n/a	n/a	9012	1637	7375	n/a	n/a	47	4			
F72	n/a	n/a	n/a	13766	1637	12129	n/a	n/a	42	-14			
F73	n/a	n/a	n/a	16512	1637	14875	n/a	n/a	45	-4			
F74	n/a	n/a	n/a	25948	1637	24311	n/a	n/a	45	-4			
F75	n/a	n/a	n/a	14843	1637	13206	n/a	n/a	36	-35			
F76	n/a	n/a	n/a	13810	1637	12173	n/a	n/a	40	-21			
F77	n/a	n/a	n/a	12578	1637	10941	n/a	n/a	53	25			
F78	n/a	n/a	n/a	16926	1637	15289	n/a	n/a	59	46			
F79	n/a	n/a	n/a	16130	1637	14493	n/a	n/a	35	-39			
F80	n/a	n/a	n/a	12358	1637	10721	n/a	n/a	40	-21			
F81	n/a	n/a	n/a	9871	1637	8234	n/a	n/a	46	0			
F82	n/a	n/a	n/a	9537	1637	7900	n/a	n/a	52	21			
F83	n/a	n/a	n/a	7788	1637	6151	n/a	n/a	34	-42			
F84	n/a	n/a	n/a	8155	1637	6518	n/a	n/a	44	-7			

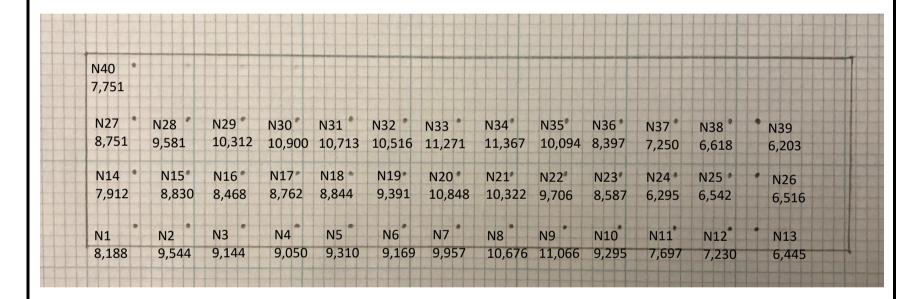
Building: Survey Unit ID: <u>SU1</u> Science Center of Page _

Room Nos. Included in S	urvey Unit:	<u>UT Heal</u>	th MC-4	<u> 0 Cycloti</u>	ron Vaul	<u>t</u>						
Location Code	Total Activity Results							Removable Activity Results				
	Alpha			Gamma			Alp	ha	Beta-Gamma			
	Gross Counts	BKG Counts	Net DPM/	Gross Counts	BKG Counts	Net CPM	Gross Counts	Net DPM/ 100 cm ²	Gross Counts	100 cm ²		
F85	n/a	n/a	n/a	7560	1637	5923	n/a	n/a	46	0		
F86	n/a	n/a	n/a	8682	1637	7045	n/a	n/a	34	-42		
F87	n/a	n/a	n/a	10376	1637	8739	n/a	n/a	39	-25		
F88	n/a	n/a	n/a	12413	1637	10776	n/a	n/a	46	0		
F89	n/a	n/a	n/a	10755	1637	9118	n/a	n/a	51	18		
F90	n/a	n/a	n/a	10957	1637	9320	n/a	n/a	44	-7		
F91	n/a	n/a	n/a	10664	1637	9027	n/a	n/a	41	-18		
F92	n/a	n/a	n/a	11053	1637	9416	n/a	n/a	50	14		
F93	n/a	n/a	n/a	11888	1637	10251	n/a	n/a	56	35		
F94	n/a	n/a	n/a	12088	1637	10451	n/a	n/a	37	-32		
F95	n/a	n/a	n/a	10982	1637	9345	n/a	n/a	33	-46		
F96	n/a	n/a	n/a	10145	1637	8508	n/a	n/a	42	-14		
F97	n/a	n/a	n/a	7950	1637	6313	n/a	n/a	37	-32		
F98	n/a	n/a	n/a	8101	1637	6464	n/a	n/a	39	-25		
F99	n/a	n/a	n/a	4343	1637	2706	n/a	n/a	50	14		
F100	n/a	n/a	n/a	4601	1637	2964	n/a	n/a	42	-14		
P1	n/a	n/a	n/a	25498	1637	23861	n/a	n/a	38	-28		
P2	n/a	n/a	n/a	25542	1637	23905	n/a	n/a	44	-7		
P3	n/a	n/a	n/a	10795	1637	9158	n/a	n/a	50	14		
P4	n/a	n/a	n/a	13811	1637	12174	n/a	n/a	36	-35		
P5	n/a	n/a	n/a	13975	1637	12338	n/a	n/a	52	21		
P6	n/a	n/a	n/a	8557	1637	6920	n/a	n/a	40	-21		
P7	n/a	n/a	n/a	6696	1637	5059	n/a	n/a	39	-25		
P8	n/a	n/a	n/a	7414	1637	5777	n/a	n/a	38	-28		
P9	n/a	n/a	n/a	8950	1637	7313	n/a	n/a	39	-25		

Building: Survey Unit ID: <u>SU1</u> Page Science Center of

Marssim Classification: N/A

			Total Activ	ity Results				Removable A	ctivity Results	
Location Code		Alpha			Gamma		Alp	ha	Beta-G	
	Gross Counts	BKG Counts	Net DPM/	Gross Counts	BKG Counts	Net CPM	Gross Counts	Net DPM/	Gross Counts	100 cm ²
P10	n/a	n/a	n/a	10413	1637	8776	n/a	n/a	46	0
P11	n/a	n/a	n/a	17749	1637	16112	n/a	n/a	48	7
N5D	n/a	n/a	n/a	8874	1637	7237	n/a	n/a	53	25
N9D	n/a	n/a	n/a	11142	1637	9505	n/a	n/a	49	11
N15D	n/a	n/a	n/a	9074	1637	7437	n/a	n/a	37	-32
N34D	n/a	n/a	n/a	10881	1637	9244	n/a	n/a	38	-28
S5D	n/a	n/a	n/a	7865	1637	6228	n/a	n/a	51	18
S11D	n/a	n/a	n/a	11733	1637	10096	n/a	n/a	45	-4
S20D	n/a	n/a	n/a	11078	1637	9441	n/a	n/a	43	-11
S38D	n/a	n/a	n/a	12002	1637	10365	n/a	n/a	49	11
W4D	n/a	n/a	n/a	10526	1637	8889	n/a	n/a	43	-11
W13D	n/a	n/a	n/a	8397	1637	6760	n/a	n/a	38	-28
E6D	n/a	n/a	n/a	5980	1637	4343	n/a	n/a	54	28
E11D	n/a	n/a	n/a	7180	1637	5543	n/a	n/a	50	14
C14D	n/a	n/a	n/a	5032	1637	3395	n/a	n/a	41	-18
C31D	n/a	n/a	n/a	12225	1637	10588	n/a	n/a	44	-7
C33D	n/a	n/a	n/a	12127	1637	10490	n/a	n/a	45	-4
C37D	n/a	n/a	n/a	9491	1637	7854	n/a	n/a	33	-46
C44D	n/a	n/a	n/a	11512	1637	9875	n/a	n/a	51	18
C55D	n/a	n/a	n/a	7379	1637	5742	n/a	n/a	54	28
C66D	n/a	n/a	n/a	7574	1637	5937	n/a	n/a	51	18
C75D	n/a	n/a	n/a	11434	1637	9797	n/a	n/a	48	7
C92D	n/a	n/a	n/a	10028	1637	8391	n/a	n/a	36	-35
C95D	n/a	n/a	n/a	7743	1637	6106	n/a	n/a	49	11
F1D	n/a	n/a	n/a	9983	1637	8346	n/a	n/a	44	-7


Building: Science Center			Survey	Unit ID:	SU1		Page		of	
Marssim Classification: Room Nos. Included in Surve	N/A y Unit:	<u>UT Heal</u>	th MC-4	0 Cyclot	on Vaul	<u>t</u>	•			
			Total Activ	vity Results				Removable A	ctivity Results	
Location Code		Alpha			Gamma		Alp	ha	Beta-G	amma
	Gross Counts	BKG Counts	Net DPM/	Gross Counts	BKG Counts	Net CPM	Gross Counts	Net DPM/	Gross Counts	100 cm ²
F18D	n/a	n/a	n/a	13790	1637	12153	n/a	n/a	43	-11
F25D	n/a	n/a	n/a	7764	1637	6127	n/a	n/a	58	42
F41D	n/a	n/a	n/a	10024	1637	8387	n/a	n/a	43	-11
F49D	n/a	n/a	n/a	18278	1637	16641	n/a	n/a	37	-32
F54D	n/a	n/a	n/a	13029	1637	11392	n/a	n/a	43	-11
F70D	n/a	n/a	n/a	9050	1637	7413	n/a	n/a	42	-14
F78D	n/a	n/a	n/a	16454	1637	14817	n/a	n/a	45	-4
F88D	n/a	n/a	n/a	12285	1637	10648	n/a	n/a	61	53
F97D	n/a	n/a	n/a	7524	1637	5887	n/a	n/a	48	7
P4D	n/a	n/a	n/a	13312	1637	11675	n/a	n/a	40	-21
			N,	/A						
										\rightarrow

Building:	Science Center	Survey Unit ID:	SU1	Page	of	
------------------	----------------	-----------------	-----	------	----	--

Marssim Classification: N/A

Room Nos. Included in Survey Unit: <u>UT Health MC-40 Cyclotron Vault</u>

North Wall

Comments: Locations determined using one meter grid. Location N23 was used as origin of the gird. Duplicate core sample taken at location N17 to satisfy QA requirements.

Building: Science Center Survey Unit ID: <u>SU1</u> Page of

Marssim Classification: N/A

Room Nos. Included in Survey Unit: <u>UT Health MC-40 Cyclotron Vault</u>

South Wall

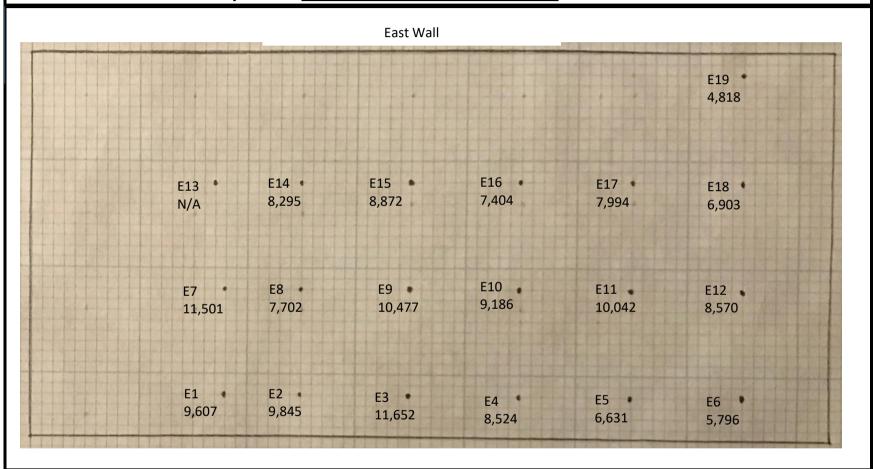
S43 3,816	* S44 4,577												545 9,413
S29	S30	S31	S32	S33	S34	S35	S36	S37	S38	S39	S40	S41	S42
8,160	8,245	6,640	7,457	8,631	10,247	12,112	12,363	11,810	11,890	12,001	12,380	11,653	12,113
S15	S16	S17	S18	S19	S20	S21	S22	S23	S24	S25	S26	S27	S28
8,112	7,906	5,274	7,251	9,605	10,748	15,501	24,287	12,922	11,017	11,001	12,151	12,051	8,575
S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11	S12	S13	S14
7,105	7,066	5,631	7.107	8,508	10,691	19,190	N/A	14,000	12,073	12,798	10,770	10,522	8,496

Comments: Locations determined using one meter grid. Location S19 was used as origin of the gird. Surface of wall was not accessible at location S8.

Building: Science Center Survey Unit ID: <u>SU1</u> Page of

Marssim Classification: N/A

Room Nos. Included in Survey Unit: <u>UT Health MC-40 Cyclotron Vault</u>


			West W	all			
W22 9 ,295	W23 9,800				W24 • 8,854	W25 • 8,094	
W15 • 9,873	W16 • 10,821	W17 - 12,957	W18 • 12,366	W19 • 11,049	W20 • 9,209	W21 • 8,471	
W8 • 8,541	W9 • 9,451	W10 • 9,971	W11 11,036	W12 • 8,894	W13 • 8,195	W14 7,499	
W1 8,350	W2 9,053	W3 • 10,558	W4 • 12,358	W5 9,430	W6 8,575	W7 • 7,410	

Comments: Locations determined using one meter grid. Location W11 was used as origin of the gird. Duplicate core samples taken at locations W5 and W11 to satisfy QA requirements.

Building: Science Center Survey Unit ID: <u>SU1</u> Page of

Marssim Classification: N/A

Room Nos. Included in Survey Unit: <u>UT Health MC-40 Cyclotron Vault</u>

Comments: Locations determined using one meter grid. Location E9 was used as origin of the gird.

Building: Science Center Survey Unit ID: <u>SU1</u> Page of

Marssim Classification: N/A

Room Nos. Included in Survey Unit: <u>UT Health MC-40 Cyclotron Vault</u>

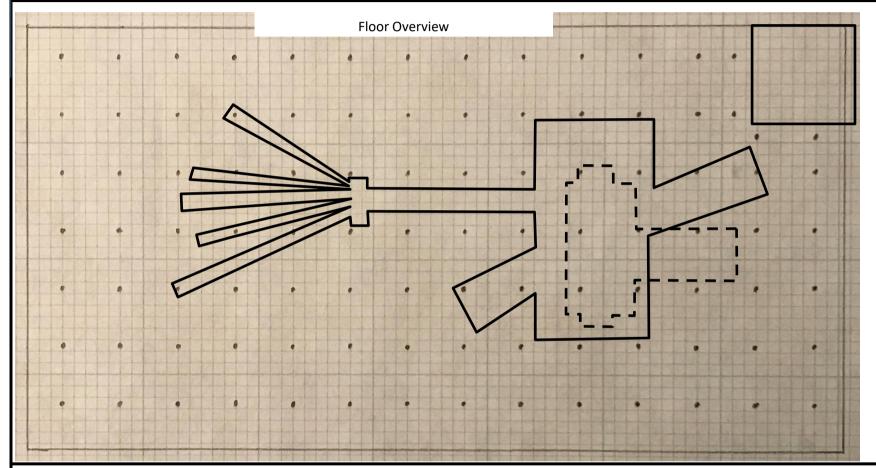
						Ceili	ng						
C86 8,282	C87 8,574	C88 8,978	C89 9,334	C90 9,875	C91 9,258	C92 10,167	C93	C94	C95 7,989	C96 6,182	C97 5,833	C98 • 5,629	C83
C71 9,009	C72 9,632	C73 11,130	C74 11,747	C75 11,299	C76 12,068	C77	10,346 C78 11,822	8,890 C79 11,186	C80 8,737	C81 6,664	C82 6,714	C84	6,557 C85
C57	C58	C59	C60	C61	C62	C63	C64	C65	C66	C67	C68	C69	C70
10,353	10,308	11,717	N/A	11,584	11,796	11,519	11,257	11,222	7,811	6,472	6,607	6,205	5,823
C43	C44	C45	C46	C47	C48	C49	C50	C51	C52	C53	C54	C55	C56
9,952	11,648	12,866	13,003	12,626	12,919	12,794	N/A	10,971	7,777	7,758	7,583	7,346	6,187
C29	C30	C31	C32	C33	C34	C35	C36	C37	C38	C39	C40	C41	C42
10,468	12,204	12,427	13,485	11,726	11,669	11,535	12,171	9,287	7,366	7,264	7,871	7,211	5,820
C15	C16	C17	C18	C19	C20	C21	C22	C23	C24	C25	C26	C27	C28
10,870	11,396	11,471	11,478	10,778	11,192	10,812	11,338	10,016	6,843	7,024	7,283	6,666	5,922
C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14
9,887	10,484	10,607	10,432	11,073	9,938	9,713	9,755	8,861	7,166	6,499	6,312	5,978	5,145

Comments: Locations for ceiling were approximated based on locations on floor grid. Location C52 was used as origin of the gird. Locations C50 and C60 were inaccessible and no static counts or smear were taken.

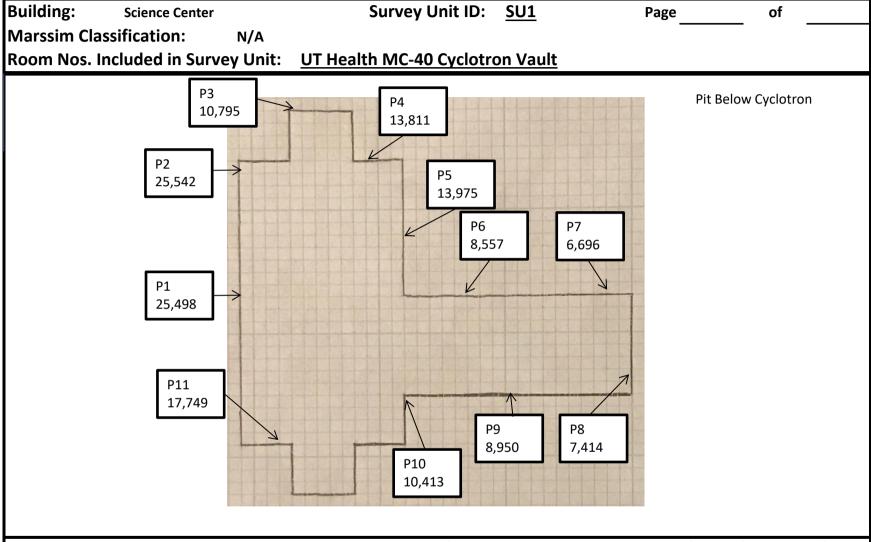
Building: Science Center Survey Unit ID: <u>SU1</u> Page of

Marssim Classification: N/A

Room Nos. Included in Survey Unit: <u>UT Health MC-40 Cyclotron Vault</u>


8,682 10 F71 F72 9,012 13, F57 F5	.0,376	F88 12,413 F73 16,512 F59 19,632	F89 10,755 F74 25,948 F60 42,382	F90 10,957 F75 14,843	F91 10,664 F76 13,810		F93 11,888 F78 16,926	F94 12,088 F79 16,130	F95 10,982 F80 12,358	F96 10,145 F81 9,871	F97 7,950 F82 9,537	F84 8,15	• F85
F71 F72 9,012 13, F57 F5	72 3,766	F73 16,512 F59	F74 25,948 F60	F75 14,843 F61	F76 13,810	F77 12,578	F78 16,926	F79 16,130	F80 12,358	F81	F82	F84	7,788 • F85
9,012 13, F57 F5	3,766	F59	25,948 F60	F61	13,810	12,578	16,926	16,130	12,358	-tttt			DATE OF THE PARTY OF
			Aller of the last transfer of the last	the standards of	F62	562		2		1 1 4 1 1 1			
			Aller of the last transfer of the last	the standards of		F63	F64	F65	F66	F67	F68	F69	F70
THE RESERVE THE RESERVE TO BE SHOULD BE			72,302	26,014	16,618	15,114	21,746	33,691	9,049	N/A	N/A	9,433	9,431
F43 F4	44	F45	F46	F47	F48	F49	F50	F51	F52	F53	F54	F55	F56
11,455 13	13,704	21,605	25,742	25,622	18,284	18,284	34,225	42,536	12,645	7,960	12,685	11,872	8,252
1123	30	F31	F32	F33	F34	F35	F36	F37	F38	F39	F40	F41	F42
	7,382	23,273	22,204	21,063	18,277	19,529	N/A	N/A	11,073	19,283	13,772	9,953	8,249
F15 F16		F17	F18	F19	F20	F21	F22	F23	F24	F25	F26	F27	F28
11,973 14,	4,592	17,286	17,653	15,113	15,860	16,694	19,369	19,119	11,085	7,714	11,803	10,383	7,618
F1 F2			F4	F5	F6	F7 *	F8	F9	F10	F11	F12	F13	F14
10,172 11	.1,794	17,226	15,173	14,527	14,419	20,712	18,635	12,811	8,839 F9	7,365	7,530	8,781	6,645 F100

Comments: Locations determined using one meter grid. Location F52 was used as origin of the gird. Locations F36, F37, F67, and F68 were inaccessible and no static counts or smear were taken. Duplicate core sample taken at location F72 to satisfy QA requirements.


Building: Science Center Survey Unit ID: <u>SU1</u> Page _____ of ____

Marssim Classification: N/A

Room Nos. Included in Survey Unit: <u>UT Health MC-40 Cyclotron Vault</u>

Comments: Area outlined in solid black line shows location of cyclotron. Area outlined in dashed black line shows location of the pit area. Square area located in Northeast corner was inaccessible for surveying.

Comments: Pit wall locations marked using one meter spacing measured from origin at P1. Wall height measured from Pit floor to vault floor is 1.1 meters and grid height is 0.9 meters from Pit floor.

Building:	Science Center		Survey Unit ID:	<u>SU1</u>	Page	of	
Marssim Class	sification:	N/A					
Room Nos. Inc	cluded in Surve	y Unit:	UT Health MC-40 Cyclotro	on Vault			

Comments Section

Date	Comment
9/15/2017	100% of accessible surfaces scanned with NaI detector. Due to interference from cyclotron and remaining components, no elevated areas were marked. All walls and ceiling assumed to be uniformly activated.
9/15/2017	No removable activity was detected from beta-gamma smears or from LSC smears.

ATTACHMENT 2

Laboratory	Reports	for	Concrete	Volume	etric Sam	ples

PO Box 30712 Charleston, SC 29417 2040 Savage Road Charleston, SC 29407 P 843.556.8171 F 843.766.1178

gel.com

October 26, 2017

Mr. Paul Jones Ameriphysics, LLC 911 Cross Park Dr. Knoxville, Tennessee 37923

Re: Ameriphysics, LLC Work Order: 433373

Dear Mr. Jones:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on September 21, 2017. This revised data report has been prepared and reviewed in accordance with GEL's standard operating procedures. The data package has been revised to correct the Gamma Spec data.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4453.

Sincerely,

Edith Kent Project Manager

Edik M. Kest

Purchase Order: 0316-001

Enclosures

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

AMPH002 Ameriphysics, LLC Client SDG: 433373 GEL Work Order: 433373

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- UI Gamma Spectroscopy--Uncertain identification

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Edith Kent.

	Edish	M.	Test	
Reviewed by				

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 26, 2017

Company: Ameriphysics, LLC Address: 911 Cross Park Dr.

Knoxville, Tennessee 37923

Contact: Mr. Paul Jones Project: Ameriphysics, LLC

 Client Sample ID:
 1132-F16 (1-6)
 Project:
 AMPH002

 Sample ID:
 433373001
 Client ID:
 AMPH002

Matrix: Misc Solid
Collect Date: 14-SEP-17 08:15
Receive Date: 21-SEP-17
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analyst Date	Time Batch	Method
Rad Gamma Spec A	Analysis									
Gammaspec, Gamn	na, Solid - Client	List "Dry	Weight Correc	cted"						
Antimony-124	U	-0.00626	+/-0.0786	0.172		pCi/g		MXR1 09/28/17	1354 1702974	1
Cadmium-109	U	-0.0642	+/-0.962	1.84		pCi/g				
Cesium-134	U	0.0385	+/-0.0683	0.130		pCi/g				
Chromium-51	U	-0.0545	+/-0.485	0.930		pCi/g				
Cobalt-56	U	0.0278	+/-0.0711	0.139		pCi/g				
Cobalt-57	UI	0.00	+/-0.136	0.264		pCi/g				
Cobalt-58	U	0.00269	+/-0.0647	0.125		pCi/g				
Cobalt-60		0.592	+/-0.114	0.0889		pCi/g				
Europium-152		8.91	+/-0.555	0.230		pCi/g				
Europium-154	UI	0.00	+/-0.252	0.581		pCi/g				
Europium-155	U	-0.0601	+/-0.141	0.261		pCi/g				
Iron-59	U	0.0341	+/-0.146	0.273		pCi/g				
Manganese-54	U	0.0427	+/-0.0611	0.123		pCi/g				
Niobium-95	U	-0.0208	+/-0.081	0.125		pCi/g				
Scandium-46	U	-0.012	+/-0.0688	0.128		pCi/g				
Silver-108m	U	-0.0319	+/-0.0374	0.0654		pCi/g				
Silver-110m	U	-0.0679	+/-0.0868	0.153		pCi/g				
Sodium-22	UI	0.00	+/-0.088	0.206		pCi/g				
Zinc-65	U	-0.0664	+/-0.160	0.246		pCi/g				
The following Prep	Methods were p	erformed:								
Method	Description	n			Analyet	Date		Time Pren Batch	1	

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	LYT1	09/22/17	0854	1702937

The following Analytical Methods were performed:

MethodDescriptionAnalyst Comments1DOE HASL 300, 4.5.2.3/Ga-01-R

counting entertainty is carearated

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

MDA: Minimum Detectable Activity

Lc/LC: Critical Level

PF: Prep Factor

RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 26, 2017

Company: Ameriphysics, LLC Address: 911 Cross Park Dr.

Knoxville, Tennessee 37923

Contact: Mr. Paul Jones Project: Ameriphysics, LLC

Client Sample ID: 1132-F18 (1-6) Project: AMPH002 Sample ID: 433373002 Client ID: AMPH002

Matrix: Misc Solid Collect Date: 14-SEP-17 08:35 21-SEP-17 Receive Date: Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analyst Date	Time Batch	Method
Rad Gamma Spec Ana	alysis									
Gammaspec, Gamma,	Solid - Client	List "Dry	Weight Correct	cted"						
Antimony-124	U	0.00521	+/-0.068	0.148		pCi/g		MXR1 09/28/17	1354 1702974	1
Cadmium-109	U	0.456	+/-1.23	1.53		pCi/g				
Cesium-134	U	-0.0275	+/-0.0542	0.0987		pCi/g				
Chromium-51	U	-0.000865	+/-0.385	0.732		pCi/g				
Cobalt-56	U	0.0877	+/-0.055	0.116		pCi/g				
Cobalt-57	U	0.186	+/-0.172	0.224		pCi/g				
Cobalt-58	U	-0.0296	+/-0.0544	0.0986		pCi/g				
Cobalt-60		0.547	+/-0.121	0.0753		pCi/g				
Europium-152		8.49	+/-0.487	0.217		pCi/g				
Europium-154		0.523	+/-0.202	0.222		pCi/g				
Europium-155	U	-0.00594	+/-0.132	0.240		pCi/g				
Iron-59	U	0.110	+/-0.123	0.226		pCi/g				
Manganese-54	U	0.013	+/-0.0529	0.101		pCi/g				
Niobium-95	U	0.0186	+/-0.0591	0.107		pCi/g				
Scandium-46	U	0.00239	+/-0.0549	0.104		pCi/g				
Silver-108m	U	-0.00788	+/-0.0328	0.0601		pCi/g				
Silver-110m	U	-0.00134	+/-0.0677	0.128		pCi/g				
Sodium-22	UI	0.00	+/-0.0713	0.131		pCi/g				
Zinc-65	U	0.153	+/-0.152	0.224		pCi/g				
The following Prep M	ethods were p	erformed:								
N (1 1						ъ.		- D D 1		

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	LYT1	09/22/17	0854	1702937

The following Analytical Methods were performed:

Method Description **Analyst Comments** DOE HASL 300, 4.5.2.3/Ga-01-R

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 26, 2017

Company: Ameriphysics, LLC Address: 911 Cross Park Dr.

Knoxville, Tennessee 37923

Contact: Mr. Paul Jones Project: Ameriphysics, LLC

 Client Sample ID:
 1132-F20 (1-6)
 Project:
 AMPH002

 Sample ID:
 433373003
 Client ID:
 AMPH002

Matrix: Misc Solid
Collect Date: 14-SEP-17 09:00
Receive Date: 21-SEP-17
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analyst Date	Time Batch	Method
Rad Gamma Spec	Analysis									
Gammaspec, Gamr	ma, Solid - Client	List "Dry	Weight Corre	cted"						
Antimony-124	U	7.70E-05	+/-0.036	0.096		pCi/g		MXR1 09/28/17	1354 1702974	1
Cadmium-109	U	-0.661	+/-1.05	1.85		pCi/g				
Cesium-134	U	0.0201	+/-0.0535	0.103		pCi/g				
Chromium-51	U	0.220	+/-0.444	0.881		pCi/g				
Cobalt-56	U	0.0491	+/-0.109	0.107		pCi/g				
Cobalt-57	UI	0.00	+/-0.118	0.232		pCi/g				
Cobalt-58	U	0.0352	+/-0.0558	0.109		pCi/g				
Cobalt-60		0.603	+/-0.119	0.0754		pCi/g				
Europium-152		7.01	+/-0.486	0.233		pCi/g				
Europium-154	UI	0.00	+/-0.220	0.423		pCi/g				
Europium-155	U	0.0367	+/-0.157	0.288		pCi/g				
Iron-59	U	-0.0186	+/-0.116	0.196		pCi/g				
Manganese-54	U	0.0116	+/-0.0468	0.0887		pCi/g				
Niobium-95	U	0.0168	+/-0.0557	0.105		pCi/g				
Scandium-46	U	-0.0092	+/-0.0603	0.108		pCi/g				
Silver-108m	U	0.0152	+/-0.036	0.0708		pCi/g				
Silver-110m	U	-0.0503	+/-0.0742	0.124		pCi/g				
Sodium-22	UI	0.00	+/-0.0776	0.0756		pCi/g				
Zinc-65	U	0.0585	+/-0.119	0.221		pCi/g				
The following Prep	Methods were p	erformed:								
Mathad	D				A 14	Doto		T' Dran Data		

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	LYT1	09/22/17	0854	1702937

The following Analytical Methods were performed:

MethodDescriptionAnalyst Comments1DOE HASL 300, 4.5.2.3/Ga-01-R

Notes:

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

MDA: Minimum Detectable Activity

Lc/LC: Critical Level

PF: Prep Factor

RL: Reporting Limit

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 26, 2017

Company: Ameriphysics, LLC Address: 911 Cross Park Dr.

Knoxville, Tennessee 37923

Contact: Mr. Paul Jones Project: Ameriphysics, LLC

Client Sample ID: 1132-F25 (1-6) Project: AMPH002 Sample ID: 433373004 Client ID: AMPH002

Matrix: Misc Solid Collect Date: 14-SEP-17 09:25 21-SEP-17 Receive Date: Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF A	nalyst Date	Time Batch	Method
Rad Gamma Spec Anal	lysis										
Gammaspec, Gamma,	Solid - Client	List "Dry	Weight Correc	cted"							
Antimony-124	U	-0.0247	+/-0.0485	0.0635		pCi/g		M	IXR1 09/28/17	1355 1702974	1
Cadmium-109	U	1.55	+/-1.62	1.67		pCi/g					
Cesium-134	U	0.0705	+/-0.0769	0.161		pCi/g					
Chromium-51	U	-0.0547	+/-0.410	0.741		pCi/g					
Cobalt-56	U	0.052	+/-0.0564	0.127		pCi/g					
Cobalt-57	UI	0.00	+/-0.149	0.0591		pCi/g					
Cobalt-58	U	0.0123	+/-0.0699	0.136		pCi/g					
Cobalt-60		0.199	+/-0.075	0.0976		pCi/g					
Europium-152		3.27	+/-0.417	0.222		pCi/g					
Europium-154	UI	0.00	+/-0.221	0.533		pCi/g					
Europium-155	U	-0.0334	+/-0.116	0.219		pCi/g					
Iron-59	U	0.00995	+/-0.133	0.272		pCi/g					
Manganese-54	U	-0.00114	+/-0.0455	0.0894		pCi/g					
Niobium-95	U	0.0259	+/-0.0735	0.145		pCi/g					
Scandium-46	U	0.0504	+/-0.0609	0.133		pCi/g					
Silver-108m	U	-0.00443	+/-0.0388	0.0761		pCi/g					
Silver-110m	U	-0.0275	+/-0.0829	0.149		pCi/g					
Sodium-22	UI	0.00	+/-0.078	0.0873		pCi/g					
Zinc-65	U	0.0381	+/-0.176	0.318		pCi/g					
The following Prep Me	ethods were p	erformed:									
Method	Description	n			Analyst	Date		Time	Prep Batch		

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	LYT1	09/22/17	0854	1702937

The following Analytical Methods were performed:

Method Description **Analyst Comments** DOE HASL 300, 4.5.2.3/Ga-01-R

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 26, 2017

Company: Ameriphysics, LLC Address: 911 Cross Park Dr.

Knoxville, Tennessee 37923

Contact: Mr. Paul Jones Project: Ameriphysics, LLC

 Client Sample ID:
 1132-F46 (1-6)
 Project:
 AMPH002

 Sample ID:
 433373005
 Client ID:
 AMPH002

Matrix: Misc Solid
Collect Date: 14-SEP-17 09:45
Receive Date: 21-SEP-17
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF A	nalyst Date	Time	Batch	Method
Rad Gamma Spec Ana	alysis											_
Gammaspec, Gamma,	Solid - Client	List "Dry	Weight Correc	cted"								
Antimony-124	U	-0.0312	+/-0.0991	0.200		pCi/g		N	IXR1 09/28/17	1355	1702974	1
Cadmium-109	U	0.133	+/-0.803	1.47		pCi/g						
Cesium-134	U	-0.0412	+/-0.0717	0.129		pCi/g						
Chromium-51	U	0.431	+/-0.518	0.963		pCi/g						
Cobalt-56	U	0.043	+/-0.0742	0.149		pCi/g						
Cobalt-57	UI	0.00	+/-0.186	0.252		pCi/g						
Cobalt-58	U	0.0756	+/-0.0798	0.161		pCi/g						
Cobalt-60		0.544	+/-0.130	0.0909		pCi/g						
Europium-152		7.20	+/-0.492	0.273		pCi/g						
Europium-154		0.759	+/-0.270	0.194		pCi/g						
Europium-155	U	0.0513	+/-0.130	0.240		pCi/g						
Iron-59	U	0.0218	+/-0.158	0.304		pCi/g						
Manganese-54	U	-1.52E-05	+/-0.0671	0.128		pCi/g						
Niobium-95	U	-0.0176	+/-0.0844	0.157		pCi/g						
Scandium-46	U	0.0367	+/-0.0686	0.139		pCi/g						
Silver-108m	U	-0.0518	+/-0.0419	0.0676		pCi/g						
Silver-110m	U	-0.0517	+/-0.0972	0.174		pCi/g						
Sodium-22	UI	0.00	+/-0.0954	0.206		pCi/g						
Zinc-65	U	0.0968	+/-0.172	0.310		pCi/g						
The following Prep M	lethods were p	erformed:										
Method	Descriptio	n			Analyst	Date		Time	Prep Batch			

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	LYT1	09/22/17	0854	1702937

The following Analytical Methods were performed:

MethodDescriptionAnalyst Comments1DOE HASL 300, 4.5.2.3/Ga-01-R

Notes:Counting Uncertainty is calculated at the

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

MDA: Minimum Detectable Activity

Lc/LC: Critical Level

PF: Prep Factor

RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 26, 2017

Company: Ameriphysics, LLC Address: 911 Cross Park Dr.

Knoxville, Tennessee 37923

Contact: Mr. Paul Jones Project: Ameriphysics, LLC

 Client Sample ID:
 1132-F46 (7-12)
 Project:
 AMPH002

 Sample ID:
 433373006
 Client ID:
 AMPH002

Matrix: Misc Solid
Collect Date: 14-SEP-17 09:55
Receive Date: 21-SEP-17
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF A	nalyst Date	Time Batch	Method
Rad Gamma Spec An	alysis										
Gammaspec, Gamma	, Solid - Client	List "Dry	Weight Corre	ected"							
Antimony-124	U	-0.0158	+/-0.0675	0.135		pCi/g		N	IXR1 09/28/17	1414 1702974	1
Cadmium-109	U	0.637	+/-1.08	0.935		pCi/g					
Cesium-134	U	-0.0195	+/-0.0456	0.0798		pCi/g					
Chromium-51	U	0.022	+/-0.362	0.650		pCi/g					
Cobalt-56	U	0.0427	+/-0.0479	0.0816		pCi/g					
Cobalt-57	UI	0.00	+/-0.0891	0.179		pCi/g					
Cobalt-58	UI	0.00	+/-0.0785	0.079		pCi/g					
Cobalt-60		0.508	+/-0.0996	0.0684		pCi/g					
Europium-152		5.42	+/-0.376	0.172		pCi/g					
Europium-154		0.382	+/-0.154	0.191		pCi/g					
Europium-155	U	0.0708	+/-0.0884	0.176		pCi/g					
Iron-59	U	-0.0273	+/-0.110	0.205		pCi/g					
Manganese-54	U	-0.000374	+/-0.044	0.0796		pCi/g					
Niobium-95	U	0.0209	+/-0.0562	0.107		pCi/g					
Scandium-46	U	-0.0273	+/-0.0513	0.0871		pCi/g					
Silver-108m	U	-0.0181	+/-0.0302	0.0552		pCi/g					
Silver-110m	U	0.0609	+/-0.0725	0.142		pCi/g					
Sodium-22	UI	0.00	+/-0.0542	0.119		pCi/g					
Zinc-65	U	-0.0653	+/-0.170	0.185		pCi/g					
The following Prep M	lethods were p	erformed:									
Method	Descriptio	n			Analyst	Date		Time	Prep Batch		

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	LYT1	09/22/17	0854	1702937

The following Analytical Methods were performed:

MethodDescriptionAnalyst Comments1DOE HASL 300, 4.5.2.3/Ga-01-R

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

MDA: Minimum Detectable Activity

Lc/LC: Critical Level

PF: Prep Factor

RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 26, 2017

Company: Ameriphysics, LLC Address: 911 Cross Park Dr.

Knoxville, Tennessee 37923

Contact: Mr. Paul Jones Project: Ameriphysics, LLC

 Client Sample ID:
 1132-F51 (1-6)
 Project:
 AMPH002

 Sample ID:
 433373007
 Client ID:
 AMPH002

Matrix: Misc Solid
Collect Date: 14-SEP-17 10:10
Receive Date: 21-SEP-17
Collector: Client

Parameter	Qualifier	Result U	Incertainty	MDC	RL	Units	PF	DF Analy	st Date	Time	Batch	Method
Rad Gamma Spec Ana	lysis											
Gammaspec, Gamma,	Solid - Client	List "Dry V	Veight Correc	eted"								
Antimony-124	U	0.0227	+/-0.107	0.239		pCi/g		MXR1	09/29/17	1152	1702974	1
Cadmium-109	U	-0.651	+/-1.33	2.43		pCi/g						
Cesium-134	U	-0.0144	+/-0.0999	0.172		pCi/g						
Chromium-51	U	-0.175	+/-0.669	1.24		pCi/g						
Cobalt-56	U	-0.0202	+/-0.0908	0.166		pCi/g						
Cobalt-57	UI	0.00	+/-0.183	0.375		pCi/g						
Cobalt-58	U	0.152	+/-0.175	0.168		pCi/g						
Cobalt-60		1.22	+/-0.174	0.117		pCi/g						
Europium-152		16.3	+/-0.759	0.308		pCi/g						
Europium-154		0.847	+/-0.413	0.373		pCi/g						
Europium-155	U	0.0659	+/-0.196	0.368		pCi/g						
Iron-59	U	0.0384	+/-0.158	0.305		pCi/g						
Manganese-54	U	0.0782	+/-0.0861	0.170		pCi/g						
Niobium-95	U	-0.0016	+/-0.0969	0.170		pCi/g						
Scandium-46	U	-0.0569	+/-0.0961	0.170		pCi/g						
Silver-108m	U	0.0314	+/-0.0546	0.105		pCi/g						
Silver-110m	U	-0.0167	+/-0.117	0.216		pCi/g						
Sodium-22	UI	0.00	+/-0.146	0.243		pCi/g						
Zinc-65	U	0.144	+/-0.220	0.381		pCi/g						
Rad Liquid Scintillatio	n Analysis											
LSC, Tritium Dist, Sol	id "As Receiv	ed"										
Tritium		5.19	+/-2.74	4.39	6.00	pCi/g		BXM4	09/29/17	0739	1703187	2
Liquid Scint Fe55, Sol	id "Dry Weigl					1 - 8						
Iron-55	U U	5.50	+/-7.21	11.3	20.0	pCi/g		TXJ1	10/09/17	1257	1703166	3
The following Prep Me	ethods were pe	erformed:										
Method	Description				Analyst	Date	Т	Γime Pr	ep Batch			
Dry Soil Prep	Dry Soil Prep		021		LYT1	09/22/17			02937			
The following Analyti	cal Methods v	vere perfori	ned:									
Method	Description						Analyst	Comment	<u> </u>			
1	DOE HASL 3		-01-R					Commone	~			
2	EPA 906.0 Mc											
3	DOE RESL F											
Surrogate/Tracer Reco						Result 1	Nomina	ıl Reco	very%	Accer	otable Li	imits

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 26, 2017

Company: Ameriphysics, LLC Address: 911 Cross Park Dr.

Knoxville, Tennessee 37923

Contact: Mr. Paul Jones Project: Ameriphysics, LLC

Client Sample ID: 1132-F51 (1-6) Project: AMPH002 Sample ID: 433373007 Client ID: AMPH002

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analyst Date	Time Batch	Method
Surrogate/Tracer Recove	ery Test					Result	Nomin	al	Recovery%	Acceptable L	imits
Iron-59 Tracer	Liquid S	cint Fe55,	Solid "Dry Weigh	t Corrected"					73.9	(15%-125%))

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

MDA: Minimum Detectable Activity

Lc/LC: Critical Level

PF: Prep Factor

RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 26, 2017

Company: Ameriphysics, LLC Address: 911 Cross Park Dr.

Knoxville, Tennessee 37923

Contact: Mr. Paul Jones Project: Ameriphysics, LLC

 Client Sample ID:
 1132-F51 (7-12)
 Project:
 AMPH002

 Sample ID:
 433373008
 Client ID:
 AMPH002

Matrix: Misc Solid
Collect Date: 14-SEP-17 10:20
Receive Date: 21-SEP-17
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analyst Date	Time Batch	Method
Rad Gamma Spec A	nalysis									
Gammaspec, Gamma	a, Solid - Client	List "Dry	Weight Correc	cted"						
Antimony-124	U	0.060	+/-0.114	0.281		pCi/g		MXR1 09/29/17	1152 1702974	1
Cadmium-109	U	-0.181	+/-1.08	2.01		pCi/g				
Cesium-134	U	0.013	+/-0.0984	0.180		pCi/g				
Chromium-51	U	-0.0117	+/-0.661	1.28		pCi/g				
Cobalt-56	U	0.0843	+/-0.0927	0.186		pCi/g				
Cobalt-57	UI	0.00	+/-0.262	0.0852		pCi/g				
Cobalt-58	U	0.0726	+/-0.0966	0.189		pCi/g				
Cobalt-60		1.10	+/-0.203	0.164		pCi/g				
Europium-152		13.8	+/-0.792	0.338		pCi/g				
Europium-154		1.22	+/-0.423	0.753		pCi/g				
Europium-155	U	0.0284	+/-0.170	0.320		pCi/g				
Iron-59	U	-0.0102	+/-0.161	0.311		pCi/g				
Manganese-54	U	-0.0378	+/-0.100	0.151		pCi/g				
Niobium-95	U	0.0873	+/-0.099	0.194		pCi/g				
Scandium-46	U	-0.047	+/-0.0956	0.175		pCi/g				
Silver-108m	U	-0.0352	+/-0.0616	0.0979		pCi/g				
Silver-110m	U	-0.0424	+/-0.129	0.239		pCi/g				
Sodium-22	U	0.0954	+/-0.189	0.120		pCi/g				
Zinc-65	U	0.0451	+/-0.185	0.327		pCi/g				
The following Prep I	Methods were p	erformed:								
M - 41 J	ъ				A 1 .	Data		m: Dan Datal		

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	LYT1	09/22/17	0854	1702937

The following Analytical Methods were performed:

MethodDescriptionAnalyst Comments1DOE HASL 300, 4.5.2.3/Ga-01-R

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

MDA: Minimum Detectable Activity

Lc/LC: Critical Level

PF: Prep Factor

RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 26, 2017

Company: Ameriphysics, LLC Address: 911 Cross Park Dr.

Knoxville, Tennessee 37923

Contact: Mr. Paul Jones Project: Ameriphysics, LLC

 Client Sample ID:
 1132-F51 (13-16)
 Project:
 AMPH002

 Sample ID:
 433373009
 Client ID:
 AMPH002

Matrix: Misc Solid
Collect Date: 14-SEP-17 10:25
Receive Date: 21-SEP-17
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analyst Date	Time Batch	Method
Rad Gamma Spec Ana	alysis									
Gammaspec, Gamma,	Solid - Client	List "Dry	Weight Correct	eted"						
Antimony-124	U	0.0332	+/-0.0946	0.219		pCi/g		MXR1 09/29/17	1234 1702974	1
Cadmium-109	U	0.150	+/-1.43	2.52		pCi/g				
Cesium-134	U	0.0736	+/-0.0687	0.139		pCi/g				
Chromium-51	U	0.0848	+/-0.534	1.01		pCi/g				
Cobalt-56	U	-0.0297	+/-0.0776	0.134		pCi/g				
Cobalt-57	UI	0.00	+/-0.229	0.296		pCi/g				
Cobalt-58	U	0.0371	+/-0.0733	0.140		pCi/g				
Cobalt-60		0.768	+/-0.130	0.0782		pCi/g				
Europium-152		9.67	+/-0.593	0.265		pCi/g				
Europium-154		0.783	+/-0.283	0.575		pCi/g				
Europium-155	U	-0.0532	+/-0.199	0.341		pCi/g				
Iron-59	U	-0.0986	+/-0.141	0.230		pCi/g				
Manganese-54	U	0.0444	+/-0.0663	0.128		pCi/g				
Niobium-95	U	0.00159	+/-0.0768	0.139		pCi/g				
Scandium-46	U	-0.0668	+/-0.0739	0.120		pCi/g				
Silver-108m	U	0.00294	+/-0.0439	0.0825		pCi/g				
Silver-110m	U	-0.0642	+/-0.0969	0.163		pCi/g				
Sodium-22	U	0.041	+/-0.143	0.0926		pCi/g				
Zinc-65	U	0.0351	+/-0.159	0.264		pCi/g				
The following Prep M	ethods were po	erformed:								
) / .1 1						D /		- D D 1		

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	LYT1	09/22/17	0854	1702937

The following Analytical Methods were performed:

MethodDescriptionAnalyst Comments1DOE HASL 300, 4.5.2.3/Ga-01-R

DOL 1113D 300, 4.3.2.3/Gu 01

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

MDA: Minimum Detectable Activity

Lc/LC: Critical Level

PF: Prep Factor

RL: Reporting Limit

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 26, 2017

Company: Ameriphysics, LLC Address: 911 Cross Park Dr.

Knoxville, Tennessee 37923

Contact: Mr. Paul Jones Project: Ameriphysics, LLC

 Client Sample ID:
 1132-F52 (1-6)
 Project:
 AMPH002

 Sample ID:
 433373010
 Client ID:
 AMPH002

Matrix: Misc Solid
Collect Date: 14-SEP-17 10:35
Receive Date: 21-SEP-17
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analyst Date	Time Batch	Method
Rad Gamma Spec A	Analysis									
Gammaspec, Gamr	na, Solid - Client	List "Dry	Weight Corre	cted"						
Antimony-124	U	0.0163	+/-0.0641	0.161		pCi/g		MXR1 09/29/1	7 1235 1702974	1
Cadmium-109	U	0.414	+/-1.01	1.91		pCi/g				
Cesium-134	U	0.0528	+/-0.0551	0.109		pCi/g				
Chromium-51	U	-0.441	+/-0.460	0.804		pCi/g				
Cobalt-56	U	0.0128	+/-0.0581	0.114		pCi/g				
Cobalt-57	UI	0.00	+/-0.169	0.0592		pCi/g				
Cobalt-58	U	0.039	+/-0.0546	0.113		pCi/g				
Cobalt-60		0.268	+/-0.0962	0.0962		pCi/g				
Europium-152		4.56	+/-0.439	0.188		pCi/g				
Europium-154	U	0.161	+/-0.177	0.372		pCi/g				
Europium-155	U	0.0891	+/-0.143	0.273		pCi/g				
Iron-59	U	0.00165	+/-0.110	0.212		pCi/g				
Manganese-54	U	0.0107	+/-0.050	0.0983		pCi/g				
Niobium-95	U	0.0776	+/-0.0824	0.103		pCi/g				
Scandium-46	U	-0.016	+/-0.0582	0.094		pCi/g				
Silver-108m	U	0.0171	+/-0.0364	0.0718		pCi/g				
Silver-110m	U	-0.0235	+/-0.0664	0.123		pCi/g				
Sodium-22	U	0.0538	+/-0.0621	0.130		pCi/g				
Zinc-65	U	-0.108	+/-0.162	0.233		pCi/g				
The following Prep	Methods were p	erformed:								
Mathad	Description				A 1 4	Doto		Time Prop Poto	L	

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	LYT1	09/22/17	0854	1702937

The following Analytical Methods were performed:

MethodDescriptionAnalyst Comments1DOE HASL 300, 4.5.2.3/Ga-01-R

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

MDA: Minimum Detectable Activity

Lc/LC: Critical Level

PF: Prep Factor

RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 26, 2017

Company: Ameriphysics, LLC Address: 911 Cross Park Dr.

Knoxville, Tennessee 37923

Contact: Mr. Paul Jones Project: Ameriphysics, LLC

 Client Sample ID:
 1132-F56 (1-6)
 Project:
 AMPH002

 Sample ID:
 433373011
 Client ID:
 AMPH002

Matrix: Misc Solid
Collect Date: 14-SEP-17 10:55
Receive Date: 21-SEP-17
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analyst Date	Time Batch	Method
Rad Gamma Spec Ana	lysis									
Gammaspec, Gamma,	Solid - Client	List "Dry	Weight Correc	cted"						
Antimony-124	U	0.0356	+/-0.0696	0.170		pCi/g		MXR1 09/29/17	1235 1702974	1
Cadmium-109	U	0.644	+/-1.40	1.45		pCi/g				
Cesium-134	U	0.0205	+/-0.0553	0.0946		pCi/g				
Chromium-51	U	-0.0253	+/-0.329	0.633		pCi/g				
Cobalt-56	U	0.023	+/-0.0424	0.0881		pCi/g				
Cobalt-57	UI	0.00	+/-0.120	0.0465		pCi/g				
Cobalt-58	U	0.014	+/-0.0437	0.0883		pCi/g				
Cobalt-60		0.192	+/-0.113	0.0829		pCi/g				
Europium-152		3.10	+/-0.314	0.213		pCi/g				
Europium-154	U	0.247	+/-0.171	0.331		pCi/g				
Europium-155	U	0.0549	+/-0.100	0.193		pCi/g				
Iron-59	U	0.0491	+/-0.0854	0.182		pCi/g				
Manganese-54	U	0.0406	+/-0.0431	0.0912		pCi/g				
Niobium-95	U	0.0295	+/-0.0537	0.0945		pCi/g				
Scandium-46	U	0.053	+/-0.0443	0.0976		pCi/g				
Silver-108m	U	-0.0114	+/-0.0265	0.0483		pCi/g				
Silver-110m	U	-0.0142	+/-0.0512	0.0971		pCi/g				
Sodium-22	UI	0.00	+/-0.0604	0.0769		pCi/g				
Zinc-65	U	-0.0588	+/-0.126	0.192		pCi/g				
The following Prep Me	ethods were pe	erformed:								
3.6.1.1										

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	LYT1	09/22/17	0854	1702937

The following Analytical Methods were performed:

MethodDescriptionAnalyst Comments1DOE HASL 300, 4.5.2.3/Ga-01-R

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

MDA: Minimum Detectable Activity

Lc/LC: Critical Level

PF: Prep Factor

RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 26, 2017

Company: Ameriphysics, LLC Address: 911 Cross Park Dr.

Knoxville, Tennessee 37923

Contact: Mr. Paul Jones Project: Ameriphysics, LLC

 Client Sample ID:
 1132-F72 (1-6)
 Project:
 AMPH002

 Sample ID:
 433373012
 Client ID:
 AMPH002

Matrix: Misc Solid
Collect Date: 14-SEP-17 11:15
Receive Date: 21-SEP-17
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF A	nalyst Date	Time	Batch	Method
Rad Gamma Spec Ana	alysis											
Gammaspec, Gamma,	Solid - Client	List "Dry	Weight Correc	cted"								
Antimony-124	U	0.0245	+/-0.0499	0.135		pCi/g		N	IXR1 09/29/17	1235	1702974	1
Cadmium-109	U	-0.0987	+/-0.900	1.65		pCi/g						
Cesium-134	U	0.0127	+/-0.0578	0.107		pCi/g						
Chromium-51	U	0.00504	+/-0.363	0.706		pCi/g						
Cobalt-56	U	-0.0167	+/-0.0548	0.0957		pCi/g						
Cobalt-57	U	0.0899	+/-0.149	0.201		pCi/g						
Cobalt-58	U	0.0352	+/-0.0547	0.106		pCi/g						
Cobalt-60		0.472	+/-0.103	0.080		pCi/g						
Europium-152		5.25	+/-0.383	0.205		pCi/g						
Europium-154	UI	0.00	+/-0.232	0.407		pCi/g						
Europium-155	U	0.0557	+/-0.126	0.237		pCi/g						
Iron-59	U	0.0469	+/-0.113	0.228		pCi/g						
Manganese-54	U	0.0203	+/-0.0438	0.0849		pCi/g						
Niobium-95	U	-0.0274	+/-0.0546	0.0948		pCi/g						
Scandium-46	U	-0.017	+/-0.0483	0.0841		pCi/g						
Silver-108m	U	-0.0252	+/-0.0375	0.0583		pCi/g						
Silver-110m	U	-0.0112	+/-0.0674	0.120		pCi/g						
Sodium-22	U	0.0375	+/-0.118	0.0743		pCi/g						
Zinc-65	U	0.0309	+/-0.153	0.201		pCi/g						
The following Prep M	ethods were pe	erformed:										
Method	Description	n			Analyst	Date		Time	Prep Batch			

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	LYT1	09/22/17	0854	1702937

The following Analytical Methods were performed:

MethodDescriptionAnalyst Comments1DOE HASL 300, 4.5.2.3/Ga-01-R

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

MDA: Minimum Detectable Activity

Lc/LC: Critical Level

PF: Prep Factor

RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 26, 2017

Company: Ameriphysics, LLC Address: 911 Cross Park Dr.

Knoxville, Tennessee 37923

Contact: Mr. Paul Jones Project: Ameriphysics, LLC

Client Sample ID: 1132-F76 (1-6) Project: AMPH002 Sample ID: 433373013 Client ID: AMPH002

Matrix: Misc Solid Collect Date: 14-SEP-17 11:45 21-SEP-17 Receive Date: Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analyst Date	Time Batch	Method
Rad Gamma Spec An	alysis									
Gammaspec, Gamma,	, Solid - Client	List "Dry	Weight Correc	cted"						
Antimony-124	U	0.0387	+/-0.0525	0.142		pCi/g		MXR1 09/29/17	1236 1702974	1
Cadmium-109	U	0.472	+/-0.751	1.41		pCi/g				
Cesium-134	U	0.0222	+/-0.0499	0.0947		pCi/g				
Chromium-51	UI	0.00	+/-0.780	0.687		pCi/g				
Cobalt-56	U	0.0114	+/-0.0503	0.0929		pCi/g				
Cobalt-57	U	0.00987	+/-0.130	0.0522		pCi/g				
Cobalt-58	U	0.00511	+/-0.0526	0.0955		pCi/g				
Cobalt-60		0.335	+/-0.109	0.0663		pCi/g				
Europium-152		5.02	+/-0.398	0.180		pCi/g				
Europium-154	U	0.222	+/-0.145	0.322		pCi/g				
Europium-155	U	0.0543	+/-0.106	0.198		pCi/g				
Iron-59	U	-0.0225	+/-0.0961	0.177		pCi/g				
Manganese-54	U	-0.0265	+/-0.0469	0.0788		pCi/g				
Niobium-95	U	0.0172	+/-0.0449	0.0857		pCi/g				
Scandium-46	U	-0.0029	+/-0.0509	0.0908		pCi/g				
Silver-108m	U	-0.00269	+/-0.0311	0.058		pCi/g				
Silver-110m	U	-0.0269	+/-0.0635	0.108		pCi/g				
Sodium-22	U	0.0808	+/-0.0505	0.113		pCi/g				
Zinc-65	U	0.0649	+/-0.128	0.227		pCi/g				
The following Prep M	lethods were po	erformed:								
X 1 1						D /		- D D 1		

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	LYT1	09/22/17	0854	1702937

The following Analytical Methods were performed:

Method Description **Analyst Comments** DOE HASL 300, 4.5.2.3/Ga-01-R

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 26, 2017

Company: Ameriphysics, LLC Address: 911 Cross Park Dr.

Knoxville, Tennessee 37923

Contact: Mr. Paul Jones Project: Ameriphysics, LLC

Client Sample ID: 1132-F80 (1-6) Project: AMPH002 Sample ID: 433373014 Client ID: AMPH002

Matrix: Misc Solid Collect Date: 14-SEP-17 12:05 21-SEP-17 Receive Date: Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analyst Date	Time Batch	Method
Rad Gamma Spec Ana	lysis									
Gammaspec, Gamma,	Solid - Client	List "Dry	Weight Correc	cted"						
Antimony-124	U	0.0366	+/-0.113	0.277		pCi/g		MXR1 09/29/17	1236 1702974	1
Cadmium-109	U	-0.532	+/-0.934	1.75		pCi/g				
Cesium-134	U	-0.00955	+/-0.0694	0.129		pCi/g				
Chromium-51	U	0.131	+/-0.520	0.965		pCi/g				
Cobalt-56	U	-0.00389	+/-0.075	0.140		pCi/g				
Cobalt-57	UI	0.00	+/-0.170	0.0684		pCi/g				
Cobalt-58	U	0.0231	+/-0.0667	0.134		pCi/g				
Cobalt-60		0.412	+/-0.133	0.0822		pCi/g				
Europium-152		4.65	+/-0.462	0.237		pCi/g				
Europium-154	U	0.252	+/-0.235	0.524		pCi/g				
Europium-155	U	0.0705	+/-0.137	0.270		pCi/g				
Iron-59	U	-0.0435	+/-0.129	0.249		pCi/g				
Manganese-54	U	-0.0456	+/-0.0638	0.107		pCi/g				
Niobium-95	U	-0.011	+/-0.0779	0.143		pCi/g				
Scandium-46	U	0.0774	+/-0.0736	0.159		pCi/g				
Silver-108m	U	-0.0165	+/-0.0395	0.0746		pCi/g				
Silver-110m	U	0.072	+/-0.0886	0.188		pCi/g				
Sodium-22	U	0.089	+/-0.0829	0.185		pCi/g				
Zinc-65	UI	0.00	+/-0.158	0.207		pCi/g				
The following Prep Mo	ethods were p	erformed:								
3.6.1.1										

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	LYT1	09/22/17	0854	1702937

The following Analytical Methods were performed:

Method Description **Analyst Comments** DOE HASL 300, 4.5.2.3/Ga-01-R

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 26, 2017

Company: Ameriphysics, LLC Address: 911 Cross Park Dr.

Knoxville, Tennessee 37923

Contact: Mr. Paul Jones Project: Ameriphysics, LLC

Client Sample ID: 1132-C46 (1-6) Project: AMPH002 Sample ID: 433373015 Client ID: AMPH002

Matrix: Misc Solid Collect Date: 14-SEP-17 12:30 21-SEP-17 Receive Date: Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analyst Date	Time Batch	Method
Rad Gamma Spec An	alysis									
Gammaspec, Gamma,	, Solid - Client	List "Dry	Weight Correc	cted"						
Antimony-124	U	0.00114	+/-0.0468	0.128		pCi/g		MXR1 09/29/17	1236 1702974	1
Cadmium-109	U	0.935	+/-1.46	1.16		pCi/g				
Cesium-134	U	-0.00282	+/-0.0573	0.111		pCi/g				
Chromium-51	U	0.165	+/-0.410	0.818		pCi/g				
Cobalt-56	U	0.0455	+/-0.065	0.134		pCi/g				
Cobalt-57	U	0.0248	+/-0.153	0.0534		pCi/g				
Cobalt-58	U	-0.00344	+/-0.0616	0.119		pCi/g				
Cobalt-60		0.484	+/-0.112	0.0786		pCi/g				
Europium-152		6.21	+/-0.463	0.224		pCi/g				
Europium-154	UI	0.00	+/-0.269	0.504		pCi/g				
Europium-155	U	0.0176	+/-0.117	0.216		pCi/g				
Iron-59	U	0.0334	+/-0.124	0.248		pCi/g				
Manganese-54	U	0.0951	+/-0.0753	0.0998		pCi/g				
Niobium-95	U	-0.0232	+/-0.065	0.121		pCi/g				
Scandium-46	U	0.0395	+/-0.0701	0.142		pCi/g				
Silver-108m	U	0.0248	+/-0.0731	0.0736		pCi/g				
Silver-110m	U	-0.0429	+/-0.107	0.168		pCi/g				
Sodium-22	UI	0.00	+/-0.0948	0.0964		pCi/g				
Zinc-65	U	-0.175	+/-0.159	0.204		pCi/g				
The following Prep M	lethods were p	erformed:								

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	LYT1	09/22/17	0854	1702937

The following Analytical Methods were performed:

Method Description **Analyst Comments** DOE HASL 300, 4.5.2.3/Ga-01-R

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 26, 2017

Company: Ameriphysics, LLC Address: 911 Cross Park Dr.

Knoxville, Tennessee 37923

Contact: Mr. Paul Jones Project: Ameriphysics, LLC

Client Sample ID: 1132-C52 (1-6) Project: AMPH002 Sample ID: 433373016 Client ID: AMPH002

Matrix: Misc Solid Collect Date: 14-SEP-17 12:40 21-SEP-17 Receive Date: Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analyst Date	Time Batch	Method
Rad Gamma Spec An	alysis									
Gammaspec, Gamma	, Solid - Client	List "Dry	Weight Corre	cted"						
Antimony-124	U	-0.0114	+/-0.0441	0.101		pCi/g		MXR1 09/29/17	1237 1702974	1
Cadmium-109	U	-0.354	+/-0.979	1.54		pCi/g				
Cesium-134	U	0.0132	+/-0.0533	0.104		pCi/g				
Chromium-51	U	-0.263	+/-0.456	0.706		pCi/g				
Cobalt-56	U	0.000214	+/-0.0533	0.101		pCi/g				
Cobalt-57	UI	0.00	+/-0.137	0.0537		pCi/g				
Cobalt-58	U	0.0149	+/-0.0528	0.104		pCi/g				
Cobalt-60		0.469	+/-0.102	0.0713		pCi/g				
Europium-152		3.71	+/-0.343	0.200		pCi/g				
Europium-154	U	0.239	+/-0.219	0.362		pCi/g				
Europium-155	U	0.0633	+/-0.131	0.237		pCi/g				
Iron-59	U	-0.0562	+/-0.0897	0.156		pCi/g				
Manganese-54	U	0.00393	+/-0.0493	0.0845		pCi/g				
Niobium-95	U	0.0062	+/-0.0542	0.104		pCi/g				
Scandium-46	U	0.0278	+/-0.0522	0.105		pCi/g				
Silver-108m	U	-0.0128	+/-0.0367	0.0641		pCi/g				
Silver-110m	U	-0.0178	+/-0.0655	0.121		pCi/g				
Sodium-22	UI	0.00	+/-0.0774	0.0798		pCi/g				
Zinc-65	U	0.0251	+/-0.146	0.188		pCi/g				
The following Prep M	lethods were p	erformed:								

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	LYT1	09/22/17	0854	1702937

The following Analytical Methods were performed:

Method Description **Analyst Comments**

DOE HASL 300, 4.5.2.3/Ga-01-R

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma). Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 26, 2017

DF Analyst Date Time Batch Method

Company: Ameriphysics, LLC Address: 911 Cross Park Dr.

Knoxville, Tennessee 37923

Result Uncertainty

Contact: Mr. Paul Jones Project: Ameriphysics, LLC

 Client Sample ID:
 1132-W3 (1-6)
 Project:
 AMPH002

 Sample ID:
 433373017
 Client ID:
 AMPH002

MDC

RL.

Units

PF

Matrix: Misc Solid
Collect Date: 14-SEP-17 13:25
Receive Date: 21-SEP-17
Collector: Client

Qualifier

Parameter	Quaimer	Result	Uncertainty	MDC	KL	Units	PF DF	Anaiyst	Date	Time	Batch	Method
Rad Gamma Spec Anal	ysis											
Gammaspec, Gamma, S	Solid - Client	List "Dry V	Weight Correc	eted"								
Antimony-124	U	-0.023	+/-0.0451	0.0798		pCi/g		MXR1 09	/29/17	1240	1702974	1
Cadmium-109	U	0.217	+/-0.861	1.61		pCi/g						
Cesium-134	U	0.00512	+/-0.0541	0.105		pCi/g						
Chromium-51	U	-0.409	+/-0.442	0.783		pCi/g						
Cobalt-56	U	-0.0156	+/-0.0593	0.110		pCi/g						
Cobalt-57	UI	0.00	+/-0.173	0.0566		pCi/g						
Cobalt-58	U	-0.0181	+/-0.054	0.101		pCi/g						
Cobalt-60		0.750	+/-0.127	0.0636		pCi/g						
Europium-152		6.56	+/-0.463	0.204		pCi/g						
Europium-154	U	0.286	+/-0.172	0.383		pCi/g						
Europium-155	U	0.015	+/-0.134	0.245		pCi/g						
Iron-59	U	-0.0118	+/-0.104	0.197		pCi/g						
Manganese-54	U	-0.0122	+/-0.0459	0.0862		pCi/g						
Niobium-95	U	0.0176	+/-0.057	0.106		pCi/g						
Scandium-46	U	0.00602	+/-0.0564	0.109		pCi/g						
Silver-108m	U	-0.00337	+/-0.0289	0.0546		pCi/g						
Silver-110m	U	-0.0138	+/-0.0771	0.144		pCi/g						
Sodium-22	U	0.103	+/-0.061	0.136		pCi/g						
Zinc-65	U	0.237	+/-0.130	0.284		pCi/g						
Rad Liquid Scintillation	n Analysis											
LSC, Tritium Dist, Soli	d "As Receiv	ed"										
Tritium	U	4.25	+/-2.73	4.45	6.00	pCi/g		BXM4 09	/29/17	0841	1703187	2
Liquid Scint Fe55, Soli	d "Dry Weigl	nt Corrected	d"									
Iron-55	U	7.13	+/-7.17	11.1	20.0	pCi/g		TXJ1 10	/09/17	1328	1703166	3
The following Prep Me	thods were pe	erformed:										
Method	Description	1			Analyst	Date	Time	Prep	Batch			
Dry Soil Prep	Dry Soil Prep	GL-RAD-A-	021		LYT1	09/22/17	0854	170293	37			
The following Analytic	cal Methods v	vere perfor	med:									
Method	Description					A	analyst Cor	nments				
1	DOE HASL 3		a-01-R									
2	EPA 906.0 M											
3	DOE RESL F											
Surrogate/Tracer Recov	very Test				R	esult N	Nominal	Recovery	v% 4	Accen	table Li	mits
	, , ,								,	· · · · · · · · · · · · · · · · · · ·		

Parameter

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 26, 2017

Company: Ameriphysics, LLC Address: 911 Cross Park Dr.

Knoxville, Tennessee 37923

Contact: Mr. Paul Jones Project: Ameriphysics, LLC

Client Sample ID: 1132-W3 (1-6) Project: AMPH002 Sample ID: 433373017 Client ID: AMPH002

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analyst Date	Time Batch	Method
Surrogate/Tracer Recove	ery Test					Result	Nomin	al	Recovery%	Acceptable L	imits
Iron-59 Tracer	Liquid S	cint Fe55,	Solid "Dry Weigh	t Corrected"					73.6	(15%-125%))

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

MDA: Minimum Detectable Activity

Lc/LC: Critical Level

PF: Prep Factor

RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 26, 2017

Company: Ameriphysics, LLC Address: 911 Cross Park Dr.

Knoxville, Tennessee 37923

Contact: Mr. Paul Jones Project: Ameriphysics, LLC

Client Sample ID: 1132-W5 (1-6) Project: AMPH002 Sample ID: 433373018 Client ID: AMPH002

Matrix: Misc Solid Collect Date: 14-SEP-17 13:35 21-SEP-17 Receive Date: Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analyst Date	Time Batch	Method
Rad Gamma Spec Ana	alysis									
Gammaspec, Gamma,	Solid - Client	List "Dry	Weight Correc	cted"						
Antimony-124	U	0.036	+/-0.0572	0.148		pCi/g		MXR1 09/29/17	1240 1702974	1
Cadmium-109	U	0.456	+/-0.689	1.23		pCi/g				
Cesium-134	U	-0.000697	+/-0.0393	0.0766		pCi/g				
Chromium-51	U	-0.231	+/-0.370	0.668		pCi/g				
Cobalt-56	U	0.00217	+/-0.048	0.0912		pCi/g				
Cobalt-57	U	0.0987	+/-0.123	0.161		pCi/g				
Cobalt-58	U	0.0347	+/-0.0474	0.0969		pCi/g				
Cobalt-60		0.440	+/-0.0827	0.0565		pCi/g				
Europium-152		4.26	+/-0.339	0.182		pCi/g				
Europium-154	U	0.0936	+/-0.222	0.199		pCi/g				
Europium-155	U	-0.0474	+/-0.0952	0.168		pCi/g				
Iron-59	U	0.0231	+/-0.0962	0.184		pCi/g				
Manganese-54	U	0.0312	+/-0.0707	0.0747		pCi/g				
Niobium-95	U	-0.0325	+/-0.0516	0.0854		pCi/g				
Scandium-46	U	0.0126	+/-0.047	0.0921		pCi/g				
Silver-108m	U	0.012	+/-0.027	0.0537		pCi/g				
Silver-110m	U	0.00865	+/-0.0599	0.116		pCi/g				
Sodium-22	U	0.0331	+/-0.0783	0.110		pCi/g				
Zinc-65	U	-0.0116	+/-0.111	0.180		pCi/g				
The following Prep M	lethods were p	erformed:								
N / 1 1						D /		- D D 1		

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	LYT1	09/22/17	0854	1702937

The following Analytical Methods were performed:

Method Description **Analyst Comments** DOE HASL 300, 4.5.2.3/Ga-01-R

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 26, 2017

Company: Ameriphysics, LLC Address: 911 Cross Park Dr.

Knoxville, Tennessee 37923

Contact: Mr. Paul Jones Project: Ameriphysics, LLC

Client Sample ID: 1132-W11 (1-6) Project: AMPH002 Sample ID: 433373019 Client ID: AMPH002

Matrix: Misc Solid Collect Date: 14-SEP-17 14:05 21-SEP-17 Receive Date: Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analyst Date	Time Batch	Method
Rad Gamma Spec	Analysis									
Gammaspec, Gami	ma, Solid - Client	List "Dry	Weight Correc	cted"						
Antimony-124	U	-0.031	+/-0.043	0.0448		pCi/g		MXR1 09/29/17	1240 1702974	1
Cadmium-109	U	0.182	+/-1.08	1.96		pCi/g				
Cesium-134	U	0.0153	+/-0.0628	0.119		pCi/g				
Chromium-51	U	0.235	+/-0.429	0.833		pCi/g				
Cobalt-56	U	0.00824	+/-0.0667	0.123		pCi/g				
Cobalt-57	UI	0.00	+/-0.105	0.220		pCi/g				
Cobalt-58	U	0.0207	+/-0.0686	0.129		pCi/g				
Cobalt-60		0.524	+/-0.105	0.0843		pCi/g				
Europium-152		5.34	+/-0.466	0.242		pCi/g				
Europium-154	UI	0.00	+/-0.255	0.530		pCi/g				
Europium-155	U	0.00646	+/-0.148	0.264		pCi/g				
Iron-59	U	-0.0225	+/-0.128	0.240		pCi/g				
Manganese-54	U	-0.0763	+/-0.0577	0.0878		pCi/g				
Niobium-95	U	0.00937	+/-0.0644	0.120		pCi/g				
Scandium-46	U	0.00659	+/-0.0642	0.119		pCi/g				
Silver-108m	U	0.0108	+/-0.0385	0.0716		pCi/g				
Silver-110m	U	0.0213	+/-0.0809	0.153		pCi/g				
Sodium-22	UI	0.00	+/-0.090	0.0897		pCi/g				
Zinc-65	U	0.0568	+/-0.145	0.257		pCi/g				
The following Prep	Methods were p	erformed:								
Mathad	D				A 14	Doto		T' Dran Datah		

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	LYT1	09/22/17	0854	1702937

The following Analytical Methods were performed:

Method Description **Analyst Comments** DOE HASL 300, 4.5.2.3/Ga-01-R

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 26, 2017

Company: Ameriphysics, LLC Address: 911 Cross Park Dr.

Knoxville, Tennessee 37923

Contact: Mr. Paul Jones Project: Ameriphysics, LLC

 Client Sample ID:
 1132-W17 (1-6)
 Project:
 AMPH002

 Sample ID:
 433373020
 Client ID:
 AMPH002

Matrix: Misc Solid
Collect Date: 14-SEP-17 14:25
Receive Date: 21-SEP-17
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	st Date	Time	Batch	Method
Rad Gamma Spec A	nalysis											
Gammaspec, Gamm	a, Solid - Client	List "Dry V	Weight Correc	eted"								
Antimony-124	U	-0.0479	+/-0.0541	0.0427		pCi/g		MXR1	09/29/17	1323	1702974	1
Cadmium-109	U	-0.394	+/-1.15	2.09		pCi/g						
Cesium-134	U	0.0431	+/-0.0637	0.126		pCi/g						
Chromium-51	U	-0.117	+/-0.459	0.875		pCi/g						
Cobalt-56	U	0.00779	+/-0.0651	0.109		pCi/g						
Cobalt-57	UI	0.00	+/-0.188	0.070		pCi/g						
Cobalt-58	U	0.00584	+/-0.0593	0.111		pCi/g						
Cobalt-60		0.901	+/-0.139	0.0823		pCi/g						
Europium-152		6.90	+/-0.526	0.234		pCi/g						
Europium-154	UI	0.00	+/-0.269	0.408		pCi/g						
Europium-155	U	0.0323	+/-0.159	0.297		pCi/g						
Iron-59	U	0.0288	+/-0.133	0.240		pCi/g						
Manganese-54	U	0.0421	+/-0.0601	0.110		pCi/g						
Niobium-95	U	0.035	+/-0.0774	0.123		pCi/g						
Scandium-46	U	-0.0136	+/-0.0652	0.116		pCi/g						
Silver-108m	U	-0.0297	+/-0.0409	0.0732		pCi/g						
Silver-110m	U	0.0317	+/-0.0803	0.154		pCi/g						
Sodium-22	UI	0.00	+/-0.095	0.0905		pCi/g						
Zinc-65	U	-0.0238	+/-0.139	0.233		pCi/g						
Rad Liquid Scintilla	tion Analysis											
LSC, Tritium Dist, S	•	ed"										
Tritium		5.28	+/-2.73	4.36	6.00	pCi/g		BXM4	09/29/17	0943	1703187	2
Liquid Scint Fe55, S	Solid "Dry Weigl	nt Correcte	d"			1 0						
Iron-55	U	0.486	+/-7.63	12.4	20.0	pCi/g		TXJ1	10/09/17	1359	1703166	3
The following Prep	Methods were pe	erformed:										
Method	Description				Analyst	Date	r	Time Prep Batch				
Dry Soil Prep	Dry Soil Prep	Dry Soil Prep GL-RAD-A-021				09/22/17	(0854 17	02937			
The following Anal	ytical Methods v	were perfor	med:									
Method	Description			Analyst Comments								
1		DOE HASL 300, 4.5.2.3/Ga-01-R										
2		EPA 906.0 Modified										
3		DOE RESL Fe-1, Modified										
Surrogate/Tracer Re	covery Test				R	Result I	Nomina	al Reco	very%	Accer	otable Li	mits

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 26, 2017

Company: Ameriphysics, LLC Address: 911 Cross Park Dr.

Knoxville, Tennessee 37923

Contact: Mr. Paul Jones Project: Ameriphysics, LLC

Client Sample ID: 1132-W17 (1-6) Project: AMPH002 Sample ID: 433373020 Client ID: AMPH002

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analyst Date	Time Batch	Method
Surrogate/Tracer Recove	ery Test					Result	Nomin	al	Recovery%	Acceptable L	imits
Iron-59 Tracer	Liquid S	cint Fe55,	Solid "Dry Weigh	t Corrected"					70.8	(15%-125%))

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

MDA: Minimum Detectable Activity

Lc/LC: Critical Level

PF: Prep Factor

RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 26, 2017

Company: Ameriphysics, LLC Address: 911 Cross Park Dr.

Knoxville, Tennessee 37923

Contact: Mr. Paul Jones Project: Ameriphysics, LLC

 Client Sample ID:
 1132-W19 (1-6)
 Project:
 AMPH002

 Sample ID:
 433373021
 Client ID:
 AMPH002

Matrix: Misc Solid
Collect Date: 14-SEP-17 14:35
Receive Date: 21-SEP-17
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	st Date	Time	Batch	Method
Rad Gamma Spec	Analysis											
Gammaspec, Gamr	na, Solid - Client	List "Dry	Weight Correc	cted"								
Antimony-124	U	0.0238	+/-0.060	0.167		pCi/g		MXR1	09/29/17	1321	1702977	1
Cadmium-109	U	-0.785	+/-0.773	1.38		pCi/g						
Cesium-134	U	0.0642	+/-0.052	0.113		pCi/g						
Chromium-51	U	-0.218	+/-0.365	0.674		pCi/g						
Cobalt-56	U	-0.0179	+/-0.0568	0.106		pCi/g						
Cobalt-57	UI	0.00	+/-0.0965	0.196		pCi/g						
Cobalt-58	U	0.0414	+/-0.0563	0.118		pCi/g						
Cobalt-60		0.766	+/-0.137	0.0703		pCi/g						
Europium-152		4.37	+/-0.438	0.225		pCi/g						
Europium-154	U	0.102	+/-0.149	0.324		pCi/g						
Europium-155	U	0.00664	+/-0.117	0.222		pCi/g						
Iron-59	U	0.0492	+/-0.121	0.247		pCi/g						
Manganese-54	U	0.0197	+/-0.0442	0.092		pCi/g						
Niobium-95	U	-0.0242	+/-0.0681	0.118		pCi/g						
Scandium-46	U	-0.0103	+/-0.0597	0.113		pCi/g						
Silver-108m	U	-0.00366	+/-0.0327	0.0624		pCi/g						
Silver-110m	U	0.00734	+/-0.0793	0.154		pCi/g						
Sodium-22	U	0.0292	+/-0.0536	0.114		pCi/g						
Zinc-65	U	-0.0788	+/-0.158	0.238		pCi/g						
Rad Liquid Scintill	ation Analysis											
LSC, Tritium Dist,	Solid "As Receiv	ed"										
Tritium	U	3.97	+/-2.66	4.35	6.00	pCi/g		BXM4	09/28/17	1524	1703187	2
Liquid Scint Fe55,	Solid "Dry Weigh	nt Correcte	ed"			1 0						
Iron-55	U	4.11	+/-7.46	11.7	20.0	pCi/g		TXJ1	10/09/17	1430	1703166	3
The following Prep	Methods were pe	erformed:										
Method	Description	n			Analyst	Date	7	Гime Pr	ep Batch			
Dry Soil Prep	Dry Soil Prep	GL-RAD-A	-021		LYT1	09/22/17	(0914 17	02947			
The following Ana	alytical Methods v	vere perfo	rmed:									
Method	Description					A	Analyst	Comments	S			
1	DOE HASL 3	00, 4.5.2.3/G	ia-01-R									
2	EPA 906.0 M											
3	DOE RESL F	e-1, Modified	i									
Surrogate/Tracer R	ecovery Test				R	Result N	Nomina	al Reco	very%	Accep	otable L	imits

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 26, 2017

Company: Ameriphysics, LLC Address: 911 Cross Park Dr.

Knoxville, Tennessee 37923

Contact: Mr. Paul Jones Project: Ameriphysics, LLC

 Client Sample ID:
 1132-W19 (1-6)
 Project:
 AMPH002

 Sample ID:
 433373021
 Client ID:
 AMPH002

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analyst Date	Time Batch	Method
Surrogate/Tracer Recove	ery Test					Result	Nomin	al	Recovery%	Acceptable L	imits
Iron-59 Tracer	Liquid S	cint Fe55,	Solid "Dry Weigh	t Corrected"					75.9	(15%-125%))

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

MDA: Minimum Detectable Activity

Lc/LC: Critical Level

PF: Prep Factor

RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: October 26, 2017

Page 1 of 10

Ameriphysics, LLC 911 Cross Park Dr. Knoxville, Tennessee

Contact: Mr. Paul Jones

Workorder: 433373

Parmname	NOM	Sample	Qual	QC	Units	RPD%	REC% Range Anlst Date Time				
Rad Gamma Spec											
Batch 1702974 ———											
QC1203880734 433373001 DUP											
Antimony-124	U	-0.00626	U	0.00759	pCi/g	N/A	N/A MXR1 09/29/17 13:2				
	Uncertainty	+/-0.0786		+/-0.0426							
Cadmium-109	U	-0.0642	U	0.820	pCi/g	N/A	N/A				
	Uncertainty	+/-0.962		+/-1.74							
Cesium-134	U	0.0385	IJ	-0.0139	pCi/g	N/A	N/A				
Cesium-134	Uncertainty	+/-0.0683	O	+/-0.0511	pens	14/21	17/11				
	Checitamey	17 0.0003		17 0.0311							
Chromium-51	U	-0.0545	U	-0.145	pCi/g	N/A	N/A				
	Uncertainty	+/-0.485		+/-0.430							
Cobalt-56	U	0.0278	U	0.00348	pCi/g	N/A	N/A				
	Uncertainty	+/-0.0711		+/-0.0555							
Cobalt-57	UI	0.00	II	0.0409	pCi/g	N/A	N/A				
Cobalt-37	Uncertainty	+/-0.136	O	+/-0.175	pc1/g	IN/A	IVA				
	e meet carrey	., 0.120		., 0.170							
Cobalt-58	U	0.00269	U	-0.00399	pCi/g	N/A	N/A				
	Uncertainty	+/-0.0647		+/-0.0541							
Cobalt-60		0.592		0.567	pCi/g	4.35	(0%-20%)				
	Uncertainty	+/-0.114		+/-0.141							
Europium-152		8.91		8.66	pCi/g	2.86	(0%-20%)				
Europium-132	Uncertainty	+/-0.555		+/-0.438	pci/g	2.80	(070-2070)				
	e meet turney	., 0.000		., 000							
Europium-154	UI	0.00		0.891	pCi/g	18.4	(0% - 100%)				
	Uncertainty	+/-0.252		+/-0.215							
Europium-155	U	-0.0601	U	0.0274	pCi/g	N/A	N/A				
•	Uncertainty	+/-0.141		+/-0.150							
Iron-59	U	0.0341	II	-0.0692	pCi/g	N/A	N/A				
Holl-37	Uncertainty	+/-0.146	O	+/-0.111	peng	IV/A	IVA				
	e meet carrey	., 0.1.0		., 0.111							
Manganese-54	U	0.0427	U	0.0253	pCi/g	N/A	N/A				
	Uncertainty	+/-0.0611		+/-0.0479							
Niobium-95	U	U -0.0208 U 0.00217 pCi/g N/A N/A									
	Uncertainty	+/-0.081		+/-0.0551							

GEL LABORATORIES LLC 2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

				oummai	<u>.y</u>				
Workorder: 433373									Page 2 of 10
Parmname	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range Anlst	Date Time
Rad Gamma Spec Batch 1702974									
Scandium-46	U	-0.012	U	0.0196	pCi/g	N/A		N/A MXR1	09/29/17 13:23
	Uncertainty	+/-0.0688		+/-0.0514					
Silver-108m	U	-0.0319	U	0.00677	pCi/g	N/A		N/A	
	Uncertainty	+/-0.0374		+/-0.0326					
Silver-110m	U	-0.0679	U	-0.00408	pCi/g	N/A		N/A	
	Uncertainty	+/-0.0868		+/-0.0652					
Sodium-22	UI	0.00	UI	0.00	pCi/g	N/A		N/A	
	Uncertainty	+/-0.088		+/-0.108					
Zinc-65	U	-0.0664	UI	0.00	pCi/g	N/A		N/A	
	Uncertainty	+/-0.160		+/-0.175					
QC1203880735 LCS	400				~ ! /		440	(===: 1===:)	00/20/45 40 40
Americium-241	488 Uncertainty			538 +/-4.40	pCi/g		110	(75%-125%)	09/29/17 13:42
	•								
Cesium-137	175 Uncertainty			182 +/-3.03	pCi/g		104	(75%-125%)	
	Officertainty								
Antimony-124	Uncertainty		U	0.552 +/-1.01	pCi/g				
	Oncertainty			+/-1.01					
Cadmium-109				225	pCi/g				
	Uncertainty			+/-15.5					
Cesium-134			U	0.341	pCi/g				
	Uncertainty			+/-0.556					
Chromium-51			U	0.0318	pCi/g				
	Uncertainty			+/-3.41					
Cobalt-56			U	-0.129	pCi/g				
	Uncertainty			+/-0.613					
Cobalt-57				0.451	pCi/g				
	Uncertainty			+/-0.383					
Cobalt-58			U	-0.0595	pCi/g				
	Uncertainty			+/-0.528					
Cobalt-60	141			140	pCi/g		99.4	(75%-125%)	
	Uncertainty			+/-3.23					

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 433373 Page 3 of 10 QC **Parmname** NOM Sample Qual Units RPD% REC% Range Anlst Date Time Rad Gamma Spec 1702974 Batch Europium-152 U 0.295 pCi/g MXR1 09/29/17 13:42 +/-1.19 Uncertainty U Europium-154 0.861 pCi/g Uncertainty +/-0.853U Europium-155 -0.0162 pCi/g +/-0.762Uncertainty U Iron-59 1.40 pCi/g +/-1.28 Uncertainty U Manganese-54 -0.0552 pCi/g +/-0.583Uncertainty U Niobium-95 0.120 pCi/g Uncertainty +/-0.482Scandium-46 U 0.549 pCi/g +/-0.639 Uncertainty U Silver-108m 0.236 pCi/g Uncertainty +/-0.445U Silver-110m -0.0476 pCi/g +/-0.852 Uncertainty Sodium-22 U 0.306 pCi/g +/-0.300Uncertainty U 1.12 pCi/g Zinc-65 Uncertainty +/-1.35 QC1203880733 MB 09/29/17 13:25 U 0.0497 Antimony-124 pCi/g +/-0.0621 Uncertainty Cadmium-109 UI 0.00 pCi/g Uncertainty +/-0.538U 0.0072 Cesium-134 pCi/g Uncertainty +/-0.0215Chromium-51 U -0.0653 pCi/g +/-0.143Uncertainty

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 433373 Page 4 of 10 **Parmname** NOM Sample Qual \mathbf{QC} Units RPD% REC% Range Anlst Date Time Rad Gamma Spec 1702974 Batch Cobalt-56 U -0.00046 pCi/g MXR1 09/29/17 13:25 Uncertainty +/-0.0219 U Cobalt-57 0.00264 pCi/g +/-0.012 Uncertainty Cobalt-58 U -0.02 pCi/g Uncertainty +/-0.0233 Cobalt-60 U -9.98E-05 pCi/g +/-0.0189 Uncertainty U Europium-152 -0.0529 pCi/g Uncertainty +/-0.0663 Europium-154 U -0.0131 pCi/g Uncertainty +/-0.0447U Europium-155 0.0175 pCi/g +/-0.0501Uncertainty U 0.00115pCi/g Iron-59 Uncertainty +/-0.0359 U 0.00139 Manganese-54 pCi/g Uncertainty +/-0.0224 Niobium-95 U -0.00571 pCi/g Uncertainty +/-0.0192 U Scandium-46 -0.0111 pCi/g Uncertainty +/-0.0177 Silver-108m U -0.00784 pCi/g Uncertainty +/-0.0184 U Silver-110m -0.0156 pCi/g +/-0.0286 Uncertainty Sodium-22 U -0.0046 pCi/g Uncertainty +/-0.0157 Zinc-65 U -0.0154 pCi/g Uncertainty +/-0.049

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 433373 Page 5 of 10 QC **Parmname NOM** Sample Qual Units RPD% REC% Range Anlst Date Time Rad Gamma Spec 1702977 Batch QC1203880741 433373021 DUP U Antimony-124 0.0238 U -0.055 N/A MXR1 09/29/17 19:17 pCi/g N/A+/-0.060 Uncertainty +/-0.0623 Cadmium-109 U -0.785 U 0.494 pCi/g N/A N/A +/-0.773 Uncertainty +/-0.762U 0.0642 U -0.0256 N/A Cesium-134 pCi/g N/A+/-0.052 +/-0.0585 Uncertainty Chromium-51 U -0.218 U -0.0966 pCi/g N/A N/A +/-0.365 +/-0.452Uncertainty Cobalt-56 U -0.0179 U 0.0378 N/A N/A pCi/g Uncertainty +/-0.0568 +/-0.0725 Cobalt-57 UI 0.00 UI 0.00pCi/g N/A N/A Uncertainty +/-0.0965 +/-0.155Cobalt-58 U 0.0414 U 0.089 pCi/g N/A N/A Uncertainty +/-0.0563 +/-0.119Cobalt-60 0.766 0.636 pCi/g 18.6 (0%-20%)Uncertainty +/-0.137 +/-0.144Europium-152 4.37 4.78 pCi/g 8.83 (0%-20%)Uncertainty +/-0.438 +/-0.411U 0.102 U N/A Europium-154 0.259 pCi/g N/A +/-0.149 Uncertainty +/-0.283Europium-155 U 0.00664 U -0.0178 N/A N/A pCi/g +/-0.117 Uncertainty +/-0.1130.0492 U U 0.0201 Iron-59 pCi/g N/A N/A +/-0.121 Uncertainty +/-0.152Manganese-54 0.0197 U -0.0151 pCi/g N/A N/A +/-0.0442 Uncertainty +/-0.0671 Niobium-95 U -0.0242 0.0544 U N/AN/A pCi/g Uncertainty +/-0.0681 +/-0.0588 Scandium-46 U -0.0103 U -0.0727 pCi/g N/A N/A +/-0.0597 Uncertainty +/-0.081

GEL LABORATORIES LLC 2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 433373					_				Page 6 of 10
Parmname	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range Anlst	Date Time
Rad Gamma Spec Batch 1702977									
Silver-108m	U Uncertainty	-0.00366 +/-0.0327	U	-0.0169 +/-0.0426	pCi/g	N/A		N/A MXR1	09/29/17 19:17
Silver-110m	U Uncertainty	0.00734 +/-0.0793	U	0.0633 +/-0.162	pCi/g	N/A		N/A	
Sodium-22	U Uncertainty	0.0292 +/-0.0536	U	0.0913 +/-0.0999	pCi/g	N/A		N/A	
Zinc-65	U Uncertainty	-0.0788 +/-0.158	U	-0.0295 +/-0.169	pCi/g	N/A		N/A	
QC1203880742 LCS Americium-241	488 Uncertainty			542 +/-5.03	pCi/g		111	(75%-125%)	09/29/17 14:02
Cesium-137	175 Uncertainty			183 +/-3.08	pCi/g		104	(75%-125%)	
Antimony-124	Uncertainty		U	0.185 +/-0.558	pCi/g				
Cadmium-109	Uncertainty			231 +/-14.7	pCi/g				
Cesium-134	Uncertainty		U	0.225 +/-0.614	pCi/g				
Chromium-51	Uncertainty		U	0.731 +/-3.54	pCi/g				
Cobalt-56	Uncertainty		U	-0.219 +/-0.592	pCi/g				
Cobalt-57	Uncertainty			0.586 +/-0.291	pCi/g				
Cobalt-58	Uncertainty		U	-0.238 +/-0.514	pCi/g				
Cobalt-60	141 Uncertainty			140 +/-3.24	pCi/g		99	(75%-125%)	
Europium-152	Uncertainty		U	0.762 +/-1.20	pCi/g				

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 433373 Page 7 of 10 QC **Parmname** NOM Sample Qual Units RPD% REC% Range Anlst Date Time Rad Gamma Spec 1702977 Batch Europium-154 U -0.108 pCi/g MXR1 09/29/17 14:02 +/-0.937Uncertainty U Europium-155 -0.0348 pCi/g Uncertainty +/-0.752U Iron-59 0.0971pCi/g Uncertainty +/-1.27 U Manganese-54 0.071 pCi/g +/-0.533 Uncertainty U Niobium-95 0.103 pCi/g +/-0.461Uncertainty Scandium-46 U -0.138 pCi/g Uncertainty +/-0.627 Silver-108m U -0.00623 pCi/g +/-0.442 Uncertainty U Silver-110m 0.634 pCi/g Uncertainty +/-0.831 Sodium-22 U -0.0379 pCi/g Uncertainty +/-0.329 Zinc-65 U 2.17 pCi/g +/-1.98Uncertainty QC1203880740 MB Antimony-124 U -0.00354 09/29/17 19:16 pCi/g Uncertainty +/-0.0593 U Cadmium-109 -0.469 pCi/g +/-0.394 Uncertainty Cesium-134 U 0.0041 pCi/g Uncertainty +/-0.016Chromium-51 U 0.0847 pCi/g Uncertainty $\pm / -0.167$ Cobalt-56 U 0.00331 pCi/g +/-0.0203Uncertainty

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 433373 Page 8 of 10 QC **Parmname** NOM Sample Qual Units RPD% REC% Range Anlst Date Time Rad Gamma Spec 1702977 Batch Cobalt-57 U -0.00441 pCi/g MXR1 09/29/17 19:16 +/-0.0133 Uncertainty U Cobalt-58 0.0107pCi/g Uncertainty +/-0.0172 Cobalt-60 U -0.00861 pCi/g Uncertainty +/-0.0218 U Europium-152 0.0216pCi/g +/-0.0536 Uncertainty U Europium-154 -0.0318 pCi/g +/-0.044Uncertainty Europium-155 U -0.0252 pCi/g Uncertainty +/-0.0528U Iron-59 -0.0384 pCi/g +/-0.0335 Uncertainty U pCi/g 0.0125 Manganese-54 Uncertainty +/-0.0199 Niobium-95 U 0.0158 pCi/g Uncertainty +/-0.0181Scandium-46 U 0.00451 pCi/g Uncertainty +/-0.0162 U pCi/g Silver-108m 0.0286 Uncertainty +/-0.0144 Silver-110m U -0.0195 pCi/g Uncertainty +/-0.0363 U Sodium-22 -0.0121 pCi/g +/-0.0149 Uncertainty Zinc-65 U 0.00266 pCi/g Uncertainty +/-0.042

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

		<u> </u>	41111141	<u> </u>				
								Page 9 of 10
NOM	Sample	Qual	QC	Units	RPD%	REC%	Range Anlst	Date Time
U		U	3.76	pCi/g	N/A		N/A TXJ1	10/09/17 15:33
Uncertainty	+/-7.21		+/-6.58					
231			234	pCi/g		101	(75%-125%)	10/09/17 16:04
Uncertainty			+/-12.8					
		U	2.46	pCi/g				10/09/17 15:01
Uncertainty			+/-6.08					
	5.19		5.09	pCi/g	1.97		(0% - 100%) BXM4	09/29/17 10:46
Uncertainty	+/-2.74		+/-2.76					
33.8			28.2	pCi/g		83.6	(75%-125%)	09/28/17 19:33
Uncertainty			+/-3.52					
		U	1.47	pCi/g				09/28/17 16:26
Uncertainty			+/-2.59					
72.0	5.19		66.8	pCi/g		85.6	(75%-125%)	09/28/17 18:31
Uncertainty	+/-2.74		+/-7.96					
	Uncertainty 231 Uncertainty Uncertainty 433.8 Uncertainty Uncertainty 72.0	U 5.50 Uncertainty +/-7.21 231 Uncertainty Uncertainty 5.19 Uncertainty +/-2.74 33.8 Uncertainty Uncertainty 5.19 5.19	NOM Sample Qual U 5.50 U +/-7.21 231 Uncertainty U Uncertainty U Uncertainty 5.19	NOM Sample Qual QC Uncertainty +/-7.21 3.76 Uncertainty +/-7.21 +/-6.58 231 234 Uncertainty +/-12.8 U 2.46 +/-6.08 Uncertainty +/-2.74 +/-2.76 33.8 28.2 Uncertainty +/-3.52 U 1.47 -/-2.59 72.0 5.19 66.8	U 5.50 U 3.76 pCi/g Uncertainty +/-7.21 +/-6.58 231 234 pCi/g Uncertainty +/-12.8 U 2.46 pCi/g Uncertainty +/-6.08 5.19 5.09 pCi/g Uncertainty +/-2.74 +/-2.76 33.8 28.2 pCi/g Uncertainty +/-3.52 U 1.47 pCi/g Uncertainty +/-2.59 72.0 5.19 66.8 pCi/g	NOM Sample Qual QC Units RPD% U 5.50 U 3.76 pCi/g N/A Uncertainty +/-7.21 +/-6.58 pCi/g N/A 231 234 pCi/g pCi/g Uncertainty +/-12.8 pCi/g pCi/g Uncertainty 5.19 5.09 pCi/g pCi/g Uncertainty +/-2.74 +/-2.76 pCi/g 33.8 28.2 pCi/g Uncertainty +/-3.52 pCi/g Uncertainty +/-2.59 pCi/g 72.0 5.19 66.8 pCi/g	NOM Sample Qual QC Units RPD% REC% U 5.50 U 3.76 pCi/g N/A Uncertainty +/-7.21 +/-6.58 231	NOM Sample Qual QC Units RPD% REC% Range Anlst U 5.50 U 3.76 pCi/g N/A N/A TXJ1 Uncertainty +/-7.21 +/-6.58 231

Notes

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

The Qualifiers in this report are defined as follows:

- ** Analyte is a Tracer compound
- < Result is less than value reported
- > Result is greater than value reported
- BD Results are either below the MDC or tracer recovery is low
- FA Failed analysis.
- H Analytical holding time was exceeded
- J Value is estimated
- K Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- L Analyte present. Reported value may be biased low. Actual value is expected to be higher.
- M M if above MDC and less than LLD

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

433373 Page 10 of 10 Parmname **NOM** Sample Qual OC Units RPD% REC% Range Anlst Date Time

- REMP Result > MDC/CL and < RDL M
- N/A RPD or %Recovery limits do not apply.
- N1 See case narrative

Workorder:

- ND Analyte concentration is not detected above the detection limit
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- One or more quality control criteria have not been met. Refer to the applicable narrative or DER. Q
- R Sample results are rejected

RL is used to evaluate the DUP result.

- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- Ш Gamma Spectroscopy--Uncertain identification
- UJ Gamma Spectroscopy--Uncertain identification
- UL Not considered detected. The associated number is the reported concentration, which may be inaccurate due to a low bias.
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- ٨ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- Preparation or preservation holding time was exceeded h

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable. ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the

* Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Ameriphysics, LLC		Chain of Custody (COC)	ody (COC)	
OA Drogram Corm	Doc	QAF 14-1	Rev #	
da riogiam i omi	Date	2/10/2015	Form #	_

	Project Number:	ect 1132	Proj	Project Name: UT Health	UT Heal	lth			-37					
	Send Report To:	1	Ameriphysics, LLC					p	-94, ₽e- 14, 8e-d				4553(5)	3(3
I	Addre	Address: 9111 Cross Park Drive, Suite D200, Knoxville, TN	s Park Dr	ive, Suite	; D200, K	noxville,	TN 37923	3	., Mn- .65, N Cs-13			,		
noit	Phoi	Phone: (865)705-1136	-1136	Fa	Fax:			noi Regr	Cr-51 O, Zn- O-124,	səvitis	99:		Page 1	of 2
pəg	Sampler (Print Name):	ımpler (Print Robbie Hansen (ame):	ansen					Sect Sisylsr	22, Sc-46, -58, Co-6 3d-109, Sl 154, and	гдие Боз	H3 & Fe	oito92	Purchase Order #:	N/A
	Shipment Method:	ent FedEx		Airbill Number:	II 1:			ıA	: (Na-2 57, Co- 10M, C				Batch #:	1132-001
	Laboratory Receiving:		GEL Laboratories						-on '9'					
	Sample ID	Sample Description	Sample Date	Sample Time	Sample Matrix	Sample Volume	Cont. Type	Cont. Quantity	Co-2			Comments, Special Instructions, etc.	pecial , etc.	Lab Sample ID (to be completed by lab
	1132-F16 (1-6)	Concrete Sample	9/14/17	8:15	S	0.5 L	Ъ	Н	X	×				
	1132-F18 (1-6)	Concrete Sample	9/14/17	8:35	S	0.5 L	Ъ		×	×				
;	1132- F20 (1- 6)	Concrete Sample	9/14/17	00:6	S	0.5 L	Ъ	, - (×	×				
s noits	1132-F25 (1-6)	Concrete Sample	9/14/17	9:25	S	0.5 L	Ъ	H	×	×				
əs	1132-F46 (1-6)	Concrete Sample	9/14/17	9:45	S	0.5 L	P	1	X	×				
	1132-F46 (7-12)	Concrete Sample	9/14/17	9:55	S	0.5 L	Ъ	H	×	×				
	1132-F51 (1-6)	Concrete Sample	9/14/17	10:10	S	0.5 L	P	1	X	X	X			
	1132-F51 (7-12)	Concrete Sample	9/14/17	10:20	S	0.5 L	Ъ	Н	X	×				
Relinquis	hed by:	(SO)		Received by: (Signature)	by: (Sign	nature)		Date:			Sample Custod	Sample Custodian Remarks (Completed By laboratory):	eted By labora	tory):
	1	<u>S</u>	•••••••	th.	S			9/6	ब्रीयादम् व	250	QA/QC level	Turnaround		Sample Receipt
Relinquis	hed by:	Relinquished by: (Signature)		Received by: (Signature)	by: (Sign	nature)		Date:		Time:	Level I	Routine 24 Hour	Total # Containers Received? COC Seals Present?	ntainers Present?
Relinquis	hed by:	Relinquished by: (Signature)		Received by: (Signature)	by: (Sign	nature)		Date		Time:	Level IIIOther	1 Week Other:	COC Seals Intact? Received Containers Intact?	Intact? ontainers
													Temperature?	re?

dy (COC)	Rev#	Form #
Chain of Custody (COC)	QAF 14-1	2/10/2015
	Doc	Date
Ameriphysics, LLC	OA Drogram Form	ביים ביים ביים ביים ביים ביים ביים ביים

SUPPLEMENTAL SECTION 2

Batch #: 1132-001

Ø

of

CI

Page

'lab														
Lab Sample ID (to be completed by lab										·				
Comments, Special Instructions, etc.														
Refer to Page 1 for Analysis Requested														
ı for Anal									X			X	×	
ier to Page	X	×	X	×	×	×	×	×	X	X	X	X	X	4
Ref	×	×	X	X	X	X	×	X	×	X	×	X	X	
Cont. Quantity	H	H	Т	parel.		Н	н		, - 1		н	H	Н	
Cont. Type	Д	Ъ	Ъ	Ъ	Ъ	Ъ	Ъ	Ъ	Ь	Ъ	Ъ	Ъ	Ъ	
Sample Volume	0.5 T	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L					
Sample Matrix	S	S	S	S	S	S	S	S	S	S	S	S	S	
Sample Time	10:25	10:35	10:55	11:15	11:45	12:05	12:30	12:40	13:25	13:35	14:05	14:25	14:35	\.
Sample Date	9/14/17	9/14/17	9/14/17	9/14/17	9/14/17	9/14/17	9/14/17	9/14/17	9/14/17	9/14/17	9/14/17	9/14/17	9/14/17	
Sample Description	Concrete Sample	Concrete Sample	Concrete Sample	Concrete Sample	Concrete Sample	Concrete Sample	Concrete Sample	Concrete Sample	Concrete Sample	Concrete Sample	Concrete Sample	Concrete Sample	Concrete Sample	
Sample ID	1132-F51 (13- 16)	1132-F52 (1-6)	1132-F56 (1-6)	1132-F72 (1-6)	1132-F76 (1-6)	1132-F80 (1-6)	1132-C46 (1-6	1132-C52 (1-6)	1132-W3 (1-6)	1132-W5 (1-6)	1132-W11 (1-6)	1132-W17 (1-6)	1132-W19 (1-6)	-
						·······································	2 H(oitoos					<u>,</u>	 ***************************************

SAMPLE RECEIPT & REVIEW FORM

Cli	ent;			SDG/AR/COC/Work Order:							
Rec	eived By: Itacy, Boone			Dat	te Received: 21-SEPT-17						
					Circle Applicable: FedEx Express FedEx Ground UPS Field Services Courier Other						
	Carrier and Tracking Number				7877 8470 3300 - 2ic						
					7877 8470 3310 - 216						
Sus	ected Hazard Information	Yes	å	*If I	Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further stigation.						
Ship	ped as a DOT Hazardous?		V	Haz	ard Class Shipped: UN#:						
	C/Samples marked or classified as pactive?			Clas	timum Net Counts Observed* (Observed Counts - Area Background Counts):CPM / mR/Hr isilied as: Rad 1 Rad 2 Rad 3						
Is pa	ckage, COC, and/or Samples marked HAZ?			If ye PCE	s, select Hazards below, and contact the GEL Safety Group. I's Flammable Foreign Soil RCRA Asbestos Beryllium Other:						
	Sample Receipt Criteria	Yes	NA	N ₀	Comments/Qualifiers (Required for Non-Conforming Items)						
1	Shipping containers received intact and sealed?	V			Circle Applicable: Seals broken Damaged container Leaking container Other (describe) .						
2	Chain of custody documents included with shipment?	/									
3	Samples requiring cold preservation within $(0 \le 6 \text{ deg. C})$?*		/		Preservation Method: Wet Ice Ice Packs Dry ice None Other: *all temperatures are recorded in Celsius TEMP:						
4	Daily check performed and passed on IR temperature gun?	7			Temperature Device Serial #: 1R3-17 Secondary Temperature Device Serial # (If Applicable):						
5	Sample containers intact and sealed?	/			Circle Applicable: Seals broken Damaged container Leaking container Other (describe)						
6	Samples requiring chemical preservation at proper pH?			4	Sample ID's and Containers Affected: If Preservation added. Lot#:						
7	Do any samples require Volatile Analysis? ·				If Yes, Are Encores or Soil Kits present? Yes No_ (If yes, take to VOA Freezer) Do VOA vials contain acid preservation? Yes No_ N/A (If unknown, select No) VOA vials free of headspace? Yes No_ N/A Sample ID's and containers affected:						
8	Samples received within holding time?	1			ID's and tests affected:						
	Sample ID's on COC match ID's on bottles?	/		- city.	Sample ID's and containers affected:						
10	Date & time on COC match date & time on bottles?	1			Sample ID's affected:						
11	Number of containers received match number indicated on COC?	/			Sample ID's affected:						
	Are sample containers identifiable as GEL provided?			7							
13	COC form is properly signed in relinquished/received sections?	/									
Com	ments (Use Continuation Form if needed):			-							
	DM (or DMA) ravia				900/ - 9/01/17 - 1 - 1						

GL-CHL-SR-001 Rev 5

Subject: Re: Questions on detected radionuclides

From: Edie Kent <emk@gel.com>

Date: 10/26/2017 1:19 PM

To: Tim Pratt <tpratt@ameriphysics.com>

CC: Nancy Mattern < Nancy. Mattern@gel.com>

Tim:

The Na-22 and Cd-109 results were intended to be rejected but were not qualified properly. The Co-57 was a false positive and should have been reported as rejected. We are in the process of correcting this and will issue a revised report.

Edie

On 10/25/2017 2:54 PM, Tim Pratt wrote:

Edie,

The ones I question are Sample 1132-F20 (1-6) with the Na-22; Sample 1132-W5D (1-6) with the Cd-109; and Samples 1132-F52 (1-6), 1132-F56 (1-6), 1132-C52 (1-6), 1132-W3 (1-6), and 1132-W17 (1-6) with the Co-57.

As I mentioned, with the short relatively short half-lives of these radionuclides and the time that has elapsed since this place was operational (2001), there is very little chance that these are really there.

Thanks,

Tim

Timothy J. Pratt Corporate Radiation Safety Officer Ameriphysics LLC 9111 Cross Park Drive, Suite D200 Knoxville, TN 37923

Office: 865-470-4171 Cell: 865-386-8066 Fax: 865-470-4179

--

Edith M. Kent Project Manager

2040 Savage Road, Charleston, SC 29407 | PO Box 30712, Charleston, SC 29417 Office Direct: 843.769.7385 | Office Main: 843.556.8171 | Fax: 843.766.1178

E-Mail: emk@gel.com | Website: www.gel.com

Page 41 of 49

1 of 2 10/26/2017 1:19 PM

Re: Questions on detected radionuclides

Environmental | Engineering | Surveying | Analytical Testing

Page 42 of 49

of 2 10/26/2017 1:19 PM

List of current GEL Certifications as of 10 October 2017

State	Certification
Alaska	UST-0110
Arkansas	88-0651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
Delaware	SC00012
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho Chemistry	SC00012
Idaho Radiochemistry	SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	90129
Kentucky Wastewater	90129
Louisiana NELAP	03046 (AI33904)
Louisiana SDWA	LA170010
Maryland	270
Massachusetts	M-SC012
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	SC000122018-1
New Hampshire NELAP	205415
New Jersey NELAP	SC002
New Mexico	SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	9904
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S.Carolina Radchem	10120002
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235-17-12
Utah NELAP	SC000122017-23
Vermont	VT87156
Virginia NELAP	460202
Washington	C780
West Virginia	997404

Radiochemistry Technical Case Narrative Ameriphysics, LLC (AMPH) SDG #: 433373

Product: Dry Weight

Preparation Method: Dry Soil Prep

Preparation Procedure: GL-RAD-A-021 REV# 21

Preparation Batch: 1702937

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
433373001	1132-F16 (1-6)
433373002	1132-F18 (1-6)
433373003	1132-F20 (1-6)
433373004	1132-F25 (1-6)
433373005	1132-F46 (1-6)
433373006	1132-F46 (7-12)
433373007	1132-F51 (1-6)
433373008	1132-F51 (7-12)
433373009	1132-F51 (13-16)
433373010	1132-F52 (1-6)
433373011	1132-F56 (1-6)
433373012	1132-F72 (1-6)
433373013	1132-F76 (1-6)
433373014	1132-F80 (1-6)
433373015	1132-C46 (1-6)
433373016	1132-C52 (1-6)
433373017	1132-W3 (1-6)
433373018	1132-W5 (1-6)
433373019	1132-W11 (1-6)
433373020	1132-W17 (1-6)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Product: Dry Weight

Preparation Method: Dry Soil Prep

Preparation Procedure: GL-RAD-A-021 REV# 21

Preparation Batch: 1702947

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID# Client Sample Identification

433373021 1132-W19 (1-6)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

<u>Product:</u> Gammaspec, Gamma, Solid - Client List <u>Analytical Method:</u> DOE HASL 300, 4.5.2.3/Ga-01-R <u>Analytical Procedure:</u> GL-RAD-A-013 REV# 27

Analytical Batch: 1702974

Preparation Method: Dry Soil Prep

Preparation Procedure: GL-RAD-A-021 REV# 21

Preparation Batch: 1702937

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
433373001	1132-F16 (1-6)
433373002	1132-F18 (1-6)
433373003	1132-F20 (1-6)
433373004	1132-F25 (1-6)
433373005	1132-F46 (1-6)
433373006	1132-F46 (7-12)
433373007	1132-F51 (1-6)
433373008	1132-F51 (7-12)
433373009	1132-F51 (13-16)
433373010	1132-F52 (1-6)
433373011	1132-F56 (1-6)
433373012	1132-F72 (1-6)
433373013	1132-F76 (1-6)
433373014	1132-F80 (1-6)
433373015	1132-C46 (1-6)
433373016	1132-C52 (1-6)
433373017	1132-W3 (1-6)
433373018	1132-W5 (1-6)
433373019	1132-W11 (1-6)
433373020	1132-W17 (1-6)
1203880733	Method Blank (MB)
1203880734	433373001(1132-F16 (1-6)) Sample Duplicate (DUP)
1203880735	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on a "dry weight" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Qualifier Information

Qualifier	Reason	Analyte	Sample	Client Sample
UI	Results are considered a false positive due to high counting uncertainty.	Chromium-51	433373013	1132-F76 (1-6)
		Cobalt-57	433373004	1132-F25 (1-6)
			433373010	1132-F52 (1-6)
			433373011	1132-F56 (1-6)
			433373016	1132-C52 (1-6)
			433373017	1132-W3 (1-6)
			433373020	1132-W17 (1-6)
		Cobalt-58	433373006	1132-F46 (7-12)
		Europium-154	433373012	1132-F72 (1-6)
		Sodium-22	433373011	1132-F56 (1-6)
UI	Results are considered a false positive due to high peak-width.		433373016	1132-C52 (1-6)
			433373020	1132-W17 (1-6)
UI	Results are considered a false positive due to interference.	Cobalt-57	433373008	1132-F51 (7-12)
			433373014	1132-F80 (1-6)
		Sodium-22	433373003	1132-F20 (1-6)
			433373004	1132-F25 (1-6)
			433373015	1132-C46 (1-6)
			433373019	1132-W11 (1-6)
			1203880734	1132-F16 (1-6)(433373001DUP)
UI	Results are considered a false positive due to low abundance.	Cobalt-57	433373001	1132-F16 (1-6)

			433373003	1132-F20 (1-6)
			433373005	1132-F46 (1-6)
			433373006	1132-F46 (7-12)
			433373007	1132-F51 (1-6)
			433373009	1132-F51 (13-16)
			433373019	1132-W11 (1-6)
		Europium-154	433373001	1132-F16 (1-6)
			433373003	1132-F20 (1-6)
			433373004	1132-F25 (1-6)
			433373015	1132-C46 (1-6)
			433373019	1132-W11 (1-6)
			433373020	1132-W17 (1-6)
		Sodium-22	433373001	1132-F16 (1-6)
			433373002	1132-F18 (1-6)
			433373005	1132-F46 (1-6)
			433373006	1132-F46 (7-12)
			433373007	1132-F51 (1-6)
		Zinc-65	1203880734	1132-F16 (1-6)(433373001DUP)
UI	Results are considered a false positive due to no valid peak.	Cadmium-109	1203880733	MB for batch 1702974
		Zinc-65	433373014	1132-F80 (1-6)

<u>Product:</u> Gammaspec, Gamma, Solid - Client List <u>Analytical Method:</u> DOE HASL 300, 4.5.2.3/Ga-01-R <u>Analytical Procedure:</u> GL-RAD-A-013 REV# 27

Analytical Batch: 1702977

Preparation Method: Dry Soil Prep

Preparation Procedure: GL-RAD-A-021 REV# 21

Preparation Batch: 1702947

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
433373021	1132-W19 (1-6)
1203880740	Method Blank (MB)
1203880741	433373021(1132-W19 (1-6)) Sample Duplicate (DUP)
1203880742	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on a "dry weight" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Qualifier Information

Qualifier	Reason	Analyte	Sample	Client Sample
UI	Results are considered a false positive due to high counting uncertainty.	Cobalt-57	1203880741	1132-W19 (1-6)(433373021DUP)
UI	Results are considered a false positive due to low abundance.		433373021	1132-W19 (1-6)

Product: Liquid Scint Fe55, Solid

<u>Analytical Method:</u> DOE RESL Fe-1, Modified <u>Analytical Procedure:</u> GL-RAD-A-040 REV# 13

Analytical Batch: 1703166

Preparation Method: Dry Soil Prep

Preparation Procedure: GL-RAD-A-021 REV# 21 **Preparation Batches:** 1702937 and 1702947

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
433373007	1132-F51 (1-6)
433373017	1132-W3 (1-6)
433373020	1132-W17 (1-6)
433373021	1132-W19 (1-6)
1203881233	Method Blank (MB)
1203881234	433373007(1132-F51 (1-6)) Sample Duplicate (DUP)
1203881235	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on a "dry weight" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

<u>Product:</u> LSC, Tritium Dist, Solid <u>Analytical Method:</u> EPA 906.0 Modified

Analytical Procedure: GL-RAD-A-002 REV# 22

Analytical Batch: 1703187

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
433373007	1132-F51 (1-6)
433373017	1132-W3 (1-6)
433373020	1132-W17 (1-6)
433373021	1132-W19 (1-6)
1203881265	Method Blank (MB)
1203881266	433373007(1132-F51 (1-6)) Sample Duplicate (DUP)
1203881267	433373007(1132-F51 (1-6)) Matrix Spike (MS)
1203881268	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Technical Information

Recounts

Samples 1203881266 (1132-F51 (1-6)DUP), 433373007 (1132-F51 (1-6)), 433373017 (1132-W3 (1-6)) and 433373020 (1132-W17 (1-6)) were recounted to verify sample results. Recounts are reported.

Miscellaneous Information

Additional Comments

The matrix spike, 1203881267 (1132-F51 (1-6)MS), aliquot was reduced to conserve sample volume.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

PO Box 30712 Charleston, SC 29417 2040 Savage Road Charleston, SC 29407 P 843.556.8171 F 843.766.1178

gel.com

October 26, 2017

Mr. Paul Jones Ameriphysics, LLC 911 Cross Park Dr. Knoxville, Tennessee 37923

Re: Ameriphysics, LLC Work Order: 433374

Dear Mr. Jones:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on September 21, 2017. This revised data report has been prepared and reviewed in accordance with GEL's standard operating procedures. The data package has been revised to correct the Gamma Spec data.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4453.

Edik M. Kest

Sincerely,

Edith Kent Project Manager

Purchase Order: 0316-001

Enclosures

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

AMPH002 Ameriphysics, LLC Client SDG: 433374 GEL Work Order: 433374

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- UI Gamma Spectroscopy--Uncertain identification

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Edith Kent.

	Edish M. Text	
Reviewed by	•	

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 26, 2017

Company: Ameriphysics, LLC Address: 911 Cross Park Dr.

Knoxville, Tennessee 37923

Contact: Mr. Paul Jones Project: Ameriphysics, LLC

Client Sample ID: 1132-E2 (1-6) Project: AMPH002 Sample ID: 433374001 Client ID: AMPH002

Matrix: Misc Solid Collect Date: 14-SEP-17 15:35 21-SEP-17 Receive Date: Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF A	nalyst Date	Time B	atch	Method
Rad Gamma Spec Ana	alysis											
Gammaspec, Gamma,	Solid - Client	List "Dry	Weight Correc	cted"								
Antimony-124	U	-0.012	+/-0.0578	0.125		pCi/g		N	IXR1 09/29/17	1324 17	02977	1
Cadmium-109	U	0.0108	+/-0.469	0.829		pCi/g						
Cesium-134	U	0.00779	+/-0.0386	0.0783		pCi/g						
Chromium-51	U	0.140	+/-0.326	0.654		pCi/g						
Cobalt-56	U	0.0156	+/-0.0464	0.093		pCi/g						
Cobalt-57	UI	0.00	+/-0.061	0.121		pCi/g						
Cobalt-58	U	-0.0532	+/-0.0407	0.0653		pCi/g						
Cobalt-60		0.421	+/-0.106	0.0732		pCi/g						
Europium-152		2.83	+/-0.293	0.158		pCi/g						
Europium-154	U	0.191	+/-0.109	0.275		pCi/g						
Europium-155	U	0.00771	+/-0.0704	0.134		pCi/g						
Iron-59	U	-0.0143	+/-0.0932	0.175		pCi/g						
Manganese-54	U	0.00255	+/-0.0322	0.0648		pCi/g						
Niobium-95	U	0.013	+/-0.0467	0.0922		pCi/g						
Scandium-46	U	0.0162	+/-0.0413	0.0847		pCi/g						
Silver-108m	U	-0.0172	+/-0.025	0.044		pCi/g						
Silver-110m	U	0.00243	+/-0.0576	0.112		pCi/g						
Sodium-22	U	0.0664	+/-0.0384	0.0964		pCi/g						
Zinc-65	U	-0.0559	+/-0.112	0.197		pCi/g						
The following Prep M	ethods were pe	erformed:										
Method	Description	n			Analyst	Date		Time	Prep Batch			

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	LYT1	09/22/17	0914	1702947

The following Analytical Methods were performed:

Method Description **Analyst Comments** DOE HASL 300, 4.5.2.3/Ga-01-R

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma). Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 26, 2017

Company: Ameriphysics, LLC Address: 911 Cross Park Dr.

Knoxville, Tennessee 37923

Contact: Mr. Paul Jones Project: Ameriphysics, LLC

Client Sample ID: 1132-E4 (1-6) Project: AMPH002 Sample ID: 433374002 Client ID: AMPH002

Matrix: Misc Solid Collect Date: 14-SEP-17 15:15 21-SEP-17 Receive Date: Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF A	nalyst Date	Time Batch	Method
Rad Gamma Spec Ana	alysis										
Gammaspec, Gamma,	Solid - Client	List "Dry	Weight Corre	cted"							
Antimony-124	U	-0.0705	+/-0.0983	0.153		pCi/g		N	IXR1 09/29/17	1324 1702977	1
Cadmium-109	U	0.472	+/-0.691	1.31		pCi/g					
Cesium-134	U	0.0669	+/-0.0582	0.131		pCi/g					
Chromium-51	U	-0.0927	+/-0.424	0.831		pCi/g					
Cobalt-56	U	-0.0174	+/-0.0647	0.117		pCi/g					
Cobalt-57	UI	0.00	+/-0.121	0.0527		pCi/g					
Cobalt-58	U	-0.0349	+/-0.0559	0.0944		pCi/g					
Cobalt-60		0.373	+/-0.122	0.0834		pCi/g					
Europium-152		2.48	+/-0.374	0.231		pCi/g					
Europium-154	U	0.0938	+/-0.133	0.316		pCi/g					
Europium-155	U	0.0274	+/-0.103	0.202		pCi/g					
Iron-59	U	-0.0286	+/-0.113	0.221		pCi/g					
Manganese-54	U	-0.0134	+/-0.0586	0.0848		pCi/g					
Niobium-95	U	-0.0358	+/-0.0588	0.100		pCi/g					
Scandium-46	U	0.0395	+/-0.0507	0.116		pCi/g					
Silver-108m	U	-0.0286	+/-0.0361	0.0639		pCi/g					
Silver-110m	U	-0.0209	+/-0.0658	0.128		pCi/g					
Sodium-22	U	0.0331	+/-0.0468	0.112		pCi/g					
Zinc-65	U	-0.015	+/-0.159	0.269		pCi/g					
The following Prep M	ethods were po	erformed:									
Method	Description	n			Analyst	Date		Time	Prep Batch		•

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	LYT1	09/22/17	0914	1702947

The following Analytical Methods were performed:

Method Description **Analyst Comments** DOE HASL 300, 4.5.2.3/Ga-01-R

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows: DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor

MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 26, 2017

Company: Ameriphysics, LLC Address: 911 Cross Park Dr.

Knoxville, Tennessee 37923

Contact: Mr. Paul Jones Project: Ameriphysics, LLC

Client Sample ID: 1132-E9 (1-6) Project: AMPH002 Sample ID: 433374003 Client ID: AMPH002

Matrix: Misc Solid Collect Date: 14-SEP-17 15:25 21-SEP-17 Receive Date: Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analyst Date	Time Batch	Method
Rad Gamma Spec Ana	lysis									
Gammaspec, Gamma,	Solid - Client	List "Dry	Weight Correc	cted"						
Antimony-124	U	0.0335	+/-0.0708	0.167		pCi/g		MXR1 09/29/17	1415 1702977	1
Cadmium-109	U	-0.066	+/-0.597	1.06		pCi/g				
Cesium-134	U	0.00749	+/-0.044	0.0831		pCi/g				
Chromium-51	U	-0.0969	+/-0.292	0.503		pCi/g				
Cobalt-56	U	-0.0164	+/-0.0434	0.0762		pCi/g				
Cobalt-57	UI	0.00	+/-0.100	0.0388		pCi/g				
Cobalt-58	U	-0.0026	+/-0.0377	0.0701		pCi/g				
Cobalt-60		0.310	+/-0.0662	0.060		pCi/g				
Europium-152		3.09	+/-0.246	0.116		pCi/g				
Europium-154	U	0.132	+/-0.161	0.279		pCi/g				
Europium-155	U	-0.064	+/-0.0825	0.146		pCi/g				
Iron-59	U	-0.00566	+/-0.0699	0.139		pCi/g				
Manganese-54	U	-0.0186	+/-0.0373	0.0645		pCi/g				
Niobium-95	U	0.0103	+/-0.0443	0.0841		pCi/g				
Scandium-46	U	0.0165	+/-0.0416	0.0811		pCi/g				
Silver-108m	U	-0.0018	+/-0.0218	0.0425		pCi/g				
Silver-110m	U	0.034	+/-0.053	0.106		pCi/g				
Sodium-22	U	0.0465	+/-0.0567	0.0659		pCi/g				
Zinc-65	U	0.0624	+/-0.0856	0.146		pCi/g				
The following Prep Mo	ethods were p	erformed:								
3.6.4.4						-		. D D 1	·	

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	LYT1	09/22/17	0914	1702947

The following Analytical Methods were performed:

Method Description **Analyst Comments** DOE HASL 300, 4.5.2.3/Ga-01-R

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma). Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 26, 2017

Company: Ameriphysics, LLC Address: 911 Cross Park Dr.

Knoxville, Tennessee 37923

Contact: Mr. Paul Jones Project: Ameriphysics, LLC

Client Sample ID: 1132-E17 (1-6) Project: AMPH002 Sample ID: 433374004 Client ID: AMPH002

Matrix: Misc Solid Collect Date: 14-SEP-17 15:50 21-SEP-17 Receive Date: Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF A	analyst Date	Time Batch	Method
Rad Gamma Spec Ana	lysis										
Gammaspec, Gamma,	Solid - Client	t List "Dry	Weight Correct	cted"							
Antimony-124	U	0.0264	+/-0.0442	0.112		pCi/g		N	IXR1 09/29/17	1428 1702977	1
Cadmium-109	U	0.921	+/-0.687	1.27		pCi/g					
Cesium-134	U	0.0395	+/-0.0292	0.063		pCi/g					
Chromium-51	U	-0.148	+/-0.272	0.500		pCi/g					
Cobalt-56	U	-0.00632	+/-0.0322	0.0575		pCi/g					
Cobalt-57	U	0.0269	+/-0.0893	0.0368		pCi/g					
Cobalt-58	U	-0.00479	+/-0.0324	0.0585		pCi/g					
Cobalt-60		0.313	+/-0.0751	0.0501		pCi/g					
Europium-152		2.51	+/-0.264	0.137		pCi/g					
Europium-154	UI	0.00	+/-0.136	0.225		pCi/g					
Europium-155	U	-0.0202	+/-0.0893	0.160		pCi/g					
Iron-59	U	-0.00466	+/-0.0658	0.128		pCi/g					
Manganese-54	U	0.00253	+/-0.0285	0.053		pCi/g					
Niobium-95	U	-0.0234	+/-0.0351	0.0594		pCi/g					
Scandium-46	U	-9.66E-05	+/-0.0345	0.0627		pCi/g					
Silver-108m	U	-0.00512	+/-0.024	0.0435		pCi/g					
Silver-110m	U	-0.0166	+/-0.0449	0.0758		pCi/g					
Sodium-22	UI	0.00	+/-0.0479	0.0399		pCi/g					
Zinc-65	U	0.0239	+/-0.0788	0.140		pCi/g					
The following Prep Me	ethods were p	erformed:									
Method	Description	on			Analyst	Date		Time	Prep Batch		
	_ ~	~									

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	LYT1	09/22/17	0914	1702947

The following Analytical Methods were performed:

Method Description **Analyst Comments** DOE HASL 300, 4.5.2.3/Ga-01-R

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma). Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 26, 2017

Company: Ameriphysics, LLC Address: 911 Cross Park Dr.

Knoxville, Tennessee 37923

Contact: Mr. Paul Jones Project: Ameriphysics, LLC

Client Sample ID: Project: AMPH002 1132-N17 (1-6) Sample ID: 433374005 Client ID: AMPH002

Matrix: Misc Solid Collect Date: 14-SEP-17 16:00 21-SEP-17 Receive Date: Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF A	nalyst Date	Time Batch	Method
Rad Gamma Spec Ana	alysis										
Gammaspec, Gamma,	Solid - Client	List "Dry	Weight Corre	cted"							
Antimony-124	U	-0.0301	+/-0.0629	0.110		pCi/g		M	IXR1 09/29/17	1429 1702977	1
Cadmium-109	U	0.707	+/-0.809	1.11		pCi/g					
Cesium-134	U	0.00601	+/-0.0379	0.069		pCi/g					
Chromium-51	U	0.0611	+/-0.289	0.557		pCi/g					
Cobalt-56	U	-0.00448	+/-0.0394	0.0691		pCi/g					
Cobalt-57	U	8.85E-05	+/-0.105	0.132		pCi/g					
Cobalt-58	U	0.00773	+/-0.0382	0.0697		pCi/g					
Cobalt-60		0.659	+/-0.0856	0.0548		pCi/g					
Europium-152		4.21	+/-0.281	0.147		pCi/g					
Europium-154	UI	0.00	+/-0.177	0.286		pCi/g					
Europium-155	U	-0.0242	+/-0.0833	0.151		pCi/g					
Iron-59	U	-0.00553	+/-0.0749	0.141		pCi/g					
Manganese-54	U	0.0119	+/-0.0328	0.0611		pCi/g					
Niobium-95	U	0.00889	+/-0.0394	0.0719		pCi/g					
Scandium-46	U	-0.00982	+/-0.0374	0.0696		pCi/g					
Silver-108m	U	0.0079	+/-0.0235	0.0415		pCi/g					
Silver-110m	U	-0.00982	+/-0.0498	0.0927		pCi/g					
Sodium-22	U	0.046	+/-0.0799	0.0607		pCi/g					
Zinc-65	U	0.0637	+/-0.0768	0.156		pCi/g					
The following Prep M	ethods were p	erformed:									
Method	Descriptio	n			Analyst	Date		Time	Prep Batch		

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	LYT1	09/22/17	0914	1702947

The following Analytical Methods were performed:

Method Description **Analyst Comments** DOE HASL 300, 4.5.2.3/Ga-01-R

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 26, 2017

Company: Ameriphysics, LLC Address: 911 Cross Park Dr.

Knoxville, Tennessee 37923

Contact: Mr. Paul Jones Project: Ameriphysics, LLC

 Client Sample ID:
 1132-N20 (1-6)
 Project:
 AMPH002

 Sample ID:
 433374006
 Client ID:
 AMPH002

Matrix: Misc Solid
Collect Date: 14-SEP-17 16:20
Receive Date: 21-SEP-17
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analyst Date	Time Batch	Method
Rad Gamma Spec A	nalysis									
Gammaspec, Gamma	a, Solid - Client	List "Dry	Weight Corre	cted"						
Antimony-124	U	-0.0383	+/-0.0485	0.0783		pCi/g		MXR1 09/29/17	1438 1702977	1
Cadmium-109	U	0.397	+/-0.810	1.49		pCi/g				
Cesium-134	U	0.016	+/-0.0354	0.0695		pCi/g				
Chromium-51	U	-0.0755	+/-0.306	0.549		pCi/g				
Cobalt-56	U	-0.000423	+/-0.0374	0.0704		pCi/g				
Cobalt-57	UI	0.00	+/-0.111	0.0453		pCi/g				
Cobalt-58	U	0.0222	+/-0.0357	0.0708		pCi/g				
Cobalt-60		0.616	+/-0.0867	0.0539		pCi/g				
Europium-152		4.63	+/-0.280	0.124		pCi/g				
Europium-154	U	0.189	+/-0.0999	0.224		pCi/g				
Europium-155	U	-0.0658	+/-0.107	0.192		pCi/g				
Iron-59	U	-0.0221	+/-0.0683	0.125		pCi/g				
Manganese-54	U	-0.0167	+/-0.0357	0.0628		pCi/g				
Niobium-95	U	-0.0411	+/-0.0445	0.0715		pCi/g				
Scandium-46	U	-0.00119	+/-0.0397	0.0743		pCi/g				
Silver-108m	U	-0.0115	+/-0.0258	0.045		pCi/g				
Silver-110m	U	-0.0056	+/-0.0473	0.0882		pCi/g				
Sodium-22	U	0.0654	+/-0.0351	0.0784		pCi/g				
Zinc-65	U	-0.0256	+/-0.110	0.124		pCi/g				
The following Prep I	Methods were p	erformed:								
M - 41 1	ъ				A 1 .	Data		m: Dana Datal		<u> </u>

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	LYT1	09/22/17	0914	1702947

The following Analytical Methods were performed:

MethodDescriptionAnalyst Comments1DOE HASL 300, 4.5.2.3/Ga-01-R

counting entertainty is carearated at

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

MDA: Minimum Detectable Activity

Lc/LC: Critical Level

PF: Prep Factor

RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 26, 2017

Company: Ameriphysics, LLC Address: 911 Cross Park Dr.

Knoxville, Tennessee 37923

Contact: Mr. Paul Jones Project: Ameriphysics, LLC

Client Sample ID: 1132-N23 (1-6) Project: AMPH002 Sample ID: 433374007 Client ID: AMPH002

Matrix: Misc Solid Collect Date: 14-SEP-17 16:30 21-SEP-17 Receive Date: Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analyst Date	Time Batch	Method
Rad Gamma Spec A	nalysis									
Gammaspec, Gamm	na, Solid - Client	t List "Dry	Weight Correc	cted"						
Antimony-124	U	0.00736	+/-0.0364	0.0863		pCi/g		MXR1 09/29/17	1430 1702977	1
Cadmium-109	U	1.07	+/-1.16	1.19		pCi/g				
Cesium-134	U	-0.000345	+/-0.0308	0.0561		pCi/g				
Chromium-51	U	-0.123	+/-0.285	0.507		pCi/g				
Cobalt-56	U	0.0208	+/-0.0328	0.0666		pCi/g				
Cobalt-57	U	0.0247	+/-0.0823	0.0354		pCi/g				
Cobalt-58	U	-0.0162	+/-0.033	0.0559		pCi/g				
Cobalt-60		0.436	+/-0.0826	0.0556		pCi/g				
Europium-152		2.78	+/-0.260	0.145		pCi/g				
Europium-154		0.222	+/-0.156	0.147		pCi/g				
Europium-155	U	-0.0319	+/-0.0843	0.150		pCi/g				
Iron-59	U	-0.0156	+/-0.0667	0.124		pCi/g				
Manganese-54	U	0.0386	+/-0.0332	0.0663		pCi/g				
Niobium-95	U	0.00798	+/-0.0372	0.068		pCi/g				
Scandium-46	U	-0.00897	+/-0.0309	0.0578		pCi/g				
Silver-108m	U	0.0016	+/-0.0205	0.0389		pCi/g				
Silver-110m	U	0.00292	+/-0.0407	0.0788		pCi/g				
Sodium-22	U	0.0784	+/-0.0549	0.0877		pCi/g				
Zinc-65	U	-0.0511	+/-0.0916	0.138		pCi/g				
The following Prep	Methods were p	erformed:								
Method	Doscriptic	\n			Anolyet	Date		Time Pren Batch	1	

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	LYT1	09/22/17	0914	1702947

The following Analytical Methods were performed:

Method Description **Analyst Comments** DOE HASL 300, 4.5.2.3/Ga-01-R

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

AMPH002

AMPH002

Report Date: October 26, 2017

Company: Ameriphysics, LLC Address: 911 Cross Park Dr.

Knoxville, Tennessee 37923

Contact: Mr. Paul Jones Project: Ameriphysics, LLC

1132-N23 (1-6) (6-12) 75P Client Sample ID:

Sample ID: 433374008 Matrix: Misc Solid Collect Date: 14-SEP-17 16:40 21-SEP-17 Receive Date:

Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analyst Date	Time Batch	Method
Rad Gamma Spec	Analysis									
Gammaspec, Gamr	na, Solid - Client	List "Dry	Weight Corre	cted"						
Antimony-124	U	0.00945	+/-0.0405	0.0814		pCi/g		MXR1 09/29/17	1430 1702977	1
Cadmium-109	U	0.376	+/-0.911	0.675		pCi/g				
Cesium-134	U	0.0199	+/-0.0206	0.0418		pCi/g				
Chromium-51	U	0.0769	+/-0.188	0.349		pCi/g				
Cobalt-56	U	0.00306	+/-0.0205	0.039		pCi/g				
Cobalt-57	UI	0.00	+/-0.0523	0.0242		pCi/g				
Cobalt-58	U	-0.0083	+/-0.0182	0.033		pCi/g				
Cobalt-60		0.106	+/-0.0403	0.0344		pCi/g				
Europium-152		1.12	+/-0.121	0.0887		pCi/g				
Europium-154	U	0.041	+/-0.0511	0.129		pCi/g				
Europium-155	U	0.0267	+/-0.0583	0.107		pCi/g				
Iron-59	U	-0.0168	+/-0.0391	0.0691		pCi/g				
Manganese-54	U	-0.00332	+/-0.017	0.0315		pCi/g				
Niobium-95	U	0.00697	+/-0.0248	0.0399		pCi/g				
Scandium-46	U	-0.00729	+/-0.0176	0.0319		pCi/g				
Silver-108m	U	-0.00641	+/-0.0141	0.0257		pCi/g				
Silver-110m	U	0.00257	+/-0.0255	0.0426		pCi/g				
Sodium-22	U	0.0145	+/-0.018	0.0286		pCi/g				
Zinc-65	U	0.0437	+/-0.078	0.0936		pCi/g				
The following Prep	Methods were p	erformed:								
Method	Dogomintio				A molviet	Data		Time Pren Ratch	ı	

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	LYT1	09/22/17	0914	1702947

The following Analytical Methods were performed:

Method Description **Analyst Comments** DOE HASL 300, 4.5.2.3/Ga-01-R

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma). Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 26, 2017

Company: Ameriphysics, LLC Address: 911 Cross Park Dr.

Knoxville, Tennessee 37923

Contact: Mr. Paul Jones Project: Ameriphysics, LLC

Client Sample ID: 1132-N30 (1-6) Project: AMPH002 Sample ID: 433374009 Client ID: AMPH002

Matrix: Misc Solid Collect Date: 14-SEP-17 16:50 21-SEP-17 Receive Date: Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF A	nalyst Date	Time Batch	Method
Rad Gamma Spec An	alysis										
Gammaspec, Gamma	, Solid - Client	List "Dry	Weight Corre	cted"							
Antimony-124	U	-0.0329	+/-0.0405	0.0677		pCi/g		M	XR1 09/29/17	1430 1702977	1
Cadmium-109	U	0.252	+/-0.873	0.995		pCi/g					
Cesium-134	U	0.025	+/-0.036	0.0608		pCi/g					
Chromium-51	U	0.0583	+/-0.242	0.477		pCi/g					
Cobalt-56	U	0.0158	+/-0.0345	0.068		pCi/g					
Cobalt-57	UI	0.00	+/-0.0869	0.0323		pCi/g					
Cobalt-58	U	0.0292	+/-0.0323	0.0666		pCi/g					
Cobalt-60		0.291	+/-0.0891	0.0551		pCi/g					
Europium-152		3.48	+/-0.273	0.131		pCi/g					
Europium-154	UI	0.00	+/-0.158	0.240		pCi/g					
Europium-155	U	-0.0215	+/-0.0709	0.134		pCi/g					
Iron-59	U	-0.0287	+/-0.0745	0.116		pCi/g					
Manganese-54	U	0.00678	+/-0.0299	0.0582		pCi/g					
Niobium-95	U	-0.0134	+/-0.0362	0.0623		pCi/g					
Scandium-46	U	0.0166	+/-0.0294	0.0597		pCi/g					
Silver-108m	U	-0.00176	+/-0.0202	0.0381		pCi/g					
Silver-110m	U	0.00838	+/-0.0365	0.072		pCi/g					
Sodium-22	UI	0.00	+/-0.0558	0.0486		pCi/g					
Zinc-65	U	0.0475	+/-0.0785	0.115		pCi/g					
The following Prep M	lethods were p	erformed:									
Method	Descriptio	n			Analyst	Date		Time	Prep Batch		

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	LYT1	09/22/17	0914	1702947

The following Analytical Methods were performed:

Method Description **Analyst Comments** DOE HASL 300, 4.5.2.3/Ga-01-R

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 26, 2017

Company: Ameriphysics, LLC Address: 911 Cross Park Dr.

Knoxville, Tennessee 37923

Contact: Mr. Paul Jones Project: Ameriphysics, LLC

 Client Sample ID:
 1132-S19 (1-6)
 Project:
 AMPH002

 Sample ID:
 433374010
 Client ID:
 AMPH002

Matrix: Misc Solid
Collect Date: 15-SEP-17 08:30
Receive Date: 21-SEP-17
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF A	analyst Date	Time Batch	Method
Rad Gamma Spec Ana	alysis										
Gammaspec, Gamma,	Solid - Client	List "Dry	Weight Corre	cted"							
Antimony-124	U	-0.0269	+/-0.0388	0.0673		pCi/g		N	MXR1 09/29/17	1430 1702977	1
Cadmium-109	U	0.174	+/-0.551	0.556		pCi/g					
Cesium-134	U	0.0521	+/-0.0508	0.0628		pCi/g					
Chromium-51	U	0.00911	+/-0.216	0.412		pCi/g					
Cobalt-56	U	-0.0245	+/-0.0275	0.0476		pCi/g					
Cobalt-57	UI	0.00	+/-0.0744	0.0239		pCi/g					
Cobalt-58	U	-0.00729	+/-0.0271	0.0504		pCi/g					
Cobalt-60		0.407	+/-0.0713	0.0509		pCi/g					
Europium-152		3.03	+/-0.216	0.114		pCi/g					
Europium-154	U	0.140	+/-0.115	0.203		pCi/g					
Europium-155	U	0.0407	+/-0.0515	0.0994		pCi/g					
Iron-59	U	-0.0211	+/-0.0578	0.104		pCi/g					
Manganese-54	U	0.000597	+/-0.0251	0.0477		pCi/g					
Niobium-95	U	0.0108	+/-0.0302	0.0571		pCi/g					
Scandium-46	U	0.00203	+/-0.0319	0.060		pCi/g					
Silver-108m	U	0.00304	+/-0.0189	0.0357		pCi/g					
Silver-110m	U	-0.0146	+/-0.0412	0.0747		pCi/g					
Sodium-22	U	0.0494	+/-0.0405	0.0618		pCi/g					
Zinc-65	U	-0.00288	+/-0.0811	0.129		pCi/g					
The following Prep M	ethods were p	erformed:									
Method	Description	n			Analyst	Date		Time	Prep Batch		·

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	LYT1	09/22/17	0914	1702947

The following Analytical Methods were performed:

MethodDescriptionAnalyst Comments1DOE HASL 300, 4.5.2.3/Ga-01-R

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor

Lc/LC: Critical Level

DL: Detection Limit

PF: Prep Factor

MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 26, 2017

Company: Ameriphysics, LLC Address: 911 Cross Park Dr.

Knoxville, Tennessee 37923

Contact: Mr. Paul Jones Project: Ameriphysics, LLC

 Client Sample ID:
 1132-S21 (1-6)
 Project:
 AMPH002

 Sample ID:
 433374011
 Client ID:
 AMPH002

Matrix: Misc Solid
Collect Date: 15-SEP-17 08:50
Receive Date: 21-SEP-17
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analyst Date	Time Batch	Method
Rad Gamma Spec Ar	nalysis									
Gammaspec, Gamma	, Solid - Client	List "Dry	Weight Corre	cted"						
Antimony-124	U	0.0228	+/-0.0316	0.106		pCi/g		MXR1 09/29/17	1913 1702977	1
Cadmium-109	U	0.289	+/-0.941	0.860		pCi/g				
Cesium-134	U	0.017	+/-0.044	0.0855		pCi/g				
Chromium-51	U	0.0352	+/-0.304	0.559		pCi/g				
Cobalt-56	U	0.0179	+/-0.0454	0.0876		pCi/g				
Cobalt-57	UI	0.00	+/-0.0745	0.151		pCi/g				
Cobalt-58	U	0.0241	+/-0.0425	0.0843		pCi/g				
Cobalt-60		0.655	+/-0.102	0.0592		pCi/g				
Europium-152		4.72	+/-0.325	0.154		pCi/g				
Europium-154	U	0.247	+/-0.185	0.291		pCi/g				
Europium-155	U	0.0364	+/-0.0703	0.142		pCi/g				
Iron-59	U	-0.0744	+/-0.0779	0.133		pCi/g				
Manganese-54	U	0.00012	+/-0.0413	0.0753		pCi/g				
Niobium-95	U	-0.0111	+/-0.0439	0.0805		pCi/g				
Scandium-46	U	-0.00872	+/-0.0384	0.0695		pCi/g				
Silver-108m	U	0.00474	+/-0.0254	0.0508		pCi/g				
Silver-110m	U	-0.00797	+/-0.0515	0.0937		pCi/g				
Sodium-22	UI	0.00	+/-0.0651	0.052		pCi/g				
Zinc-65	U	-0.0424	+/-0.125	0.139		pCi/g				
The following Prep N	Methods were p	erformed:								
Method	Descriptio	n			Analyst	Date		Time Prep Batch		

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	LYT1	09/22/17	0914	1702947

The following Analytical Methods were performed:

MethodDescriptionAnalyst Comments1DOE HASL 300, 4.5.2.3/Ga-01-R

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

MDA: Minimum Detectable Activity

Lc/LC: Critical Level

PF: Prep Factor

RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 26, 2017

Company: Ameriphysics, LLC Address: 911 Cross Park Dr.

Knoxville, Tennessee 37923

Contact: Mr. Paul Jones Project: Ameriphysics, LLC

Client Sample ID: Project: AMPH002 1132-S26 (1-6) Sample ID: 433374012 Client ID: AMPH002

Matrix: Misc Solid Collect Date: 15-SEP-17 09:00 21-SEP-17 Receive Date: Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF A	nalyst Date	Time	Batch	Method
Rad Gamma Spec Ana	alysis											
Gammaspec, Gamma,	Solid - Client	t List "Dry	Weight Correc	cted"								
Antimony-124	U	-0.00597	+/-0.0369	0.0749		pCi/g		N	IXR1 09/29/17	1431	1702977	1
Cadmium-109	U	0.172	+/-0.510	0.894		pCi/g						
Cesium-134	U	0.0149	+/-0.0331	0.0621		pCi/g						
Chromium-51	U	-0.0507	+/-0.232	0.440		pCi/g						
Cobalt-56	U	0.0113	+/-0.0305	0.0571		pCi/g						
Cobalt-57	U	0.089	+/-0.0912	0.120		pCi/g						
Cobalt-58	U	0.0208	+/-0.0304	0.0586		pCi/g						
Cobalt-60		0.536	+/-0.0729	0.0357		pCi/g						
Europium-152		4.64	+/-0.244	0.100		pCi/g						
Europium-154		0.393	+/-0.156	0.230		pCi/g						
Europium-155	U	0.0236	+/-0.0715	0.134		pCi/g						
Iron-59	U	0.0756	+/-0.0607	0.125		pCi/g						
Manganese-54	U	-7.12E-05	+/-0.0279	0.0505		pCi/g						
Niobium-95	U	0.00734	+/-0.0305	0.0566		pCi/g						
Scandium-46	U	0.013	+/-0.0307	0.0577		pCi/g						
Silver-108m	U	0.00429	+/-0.0179	0.0348		pCi/g						
Silver-110m	U	-0.00419	+/-0.0397	0.071		pCi/g						
Sodium-22	U	0.0346	+/-0.0745	0.0457		pCi/g						
Zinc-65	U	0.093	+/-0.0905	0.136		pCi/g						
The following Prep M	ethods were p	erformed:										
Method	Description	on			Analyst	Date		Time	Prep Batch			
D 0 11 D	D 0 11 D	CI DAD	021		T 377D1	00/00/17		0014	15020.45			

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	LYT1	09/22/17	0914	1702947

The following Analytical Methods were performed:

Method Description **Analyst Comments** DOE HASL 300, 4.5.2.3/Ga-01-R

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 26, 2017

Company: Ameriphysics, LLC Address: 911 Cross Park Dr.

Knoxville, Tennessee 37923

Contact: Mr. Paul Jones Project: Ameriphysics, LLC

Client Sample ID: 1132-S40 (1-6) Project: AMPH002 Sample ID: 433374013 Client ID: AMPH002

Matrix: Misc Solid Collect Date: 15-SEP-17 09:20 21-SEP-17 Receive Date: Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analyst Date	Time Batch	Method
Rad Gamma Spec A	nalysis									
Gammaspec, Gamma	a, Solid - Client	List "Dry	Weight Corre	cted"						
Antimony-124	U	-0.0432	+/-0.0895	0.157		pCi/g		MXR1 09/29/17	1431 1702977	7 1
Cadmium-109	U	0.547	+/-0.947	1.05		pCi/g				
Cesium-134	U	-0.014	+/-0.0564	0.0982		pCi/g				
Chromium-51	U	-0.0938	+/-0.354	0.665		pCi/g				
Cobalt-56	U	-0.0125	+/-0.0601	0.103		pCi/g				
Cobalt-57	UI	0.00	+/-0.121	0.0431		pCi/g				
Cobalt-58	U	0.0517	+/-0.0559	0.109		pCi/g				
Cobalt-60		0.765	+/-0.113	0.0549		pCi/g				
Europium-152		5.40	+/-0.371	0.194		pCi/g				
Europium-154		0.473	+/-0.156	0.355		pCi/g				
Europium-155	U	0.0159	+/-0.0905	0.168		pCi/g				
Iron-59	U	0.0086	+/-0.113	0.192		pCi/g				
Manganese-54	U	-0.035	+/-0.0514	0.081		pCi/g				
Niobium-95	U	-0.0261	+/-0.0569	0.0971		pCi/g				
Scandium-46	U	0.0384	+/-0.0525	0.106		pCi/g				
Silver-108m	U	0.00587	+/-0.0326	0.0621		pCi/g				
Silver-110m	U	-0.0706	+/-0.0655	0.113		pCi/g				
Sodium-22	U	0.0157	+/-0.0792	0.0521		pCi/g				
Zinc-65	U	-0.0717	+/-0.152	0.191		pCi/g				
The following Prep I	Methods were p	erformed:								
Madaad	Б : .:					Data		m: Dans Datal	_	

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	LYT1	09/22/17	0914	1702947

The following Analytical Methods were performed:

Method Description **Analyst Comments** DOE HASL 300, 4.5.2.3/Ga-01-R

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 26, 2017

Company: Ameriphysics, LLC Address: 911 Cross Park Dr.

Knoxville, Tennessee 37923

Contact: Mr. Paul Jones Project: Ameriphysics, LLC

Client Sample ID: 1132-F72D Project: AMPH002 Sample ID: 433374014 Client ID: AMPH002

Matrix: Misc Solid
Collect Date: 14-SEP-17 11:35
Receive Date: 21-SEP-17
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analyst Date	Time Batch	Method
Rad Gamma Spec A	Analysis									
Gammaspec, Gamn	na, Solid - Client	List "Dry	Weight Corre	cted"						
Antimony-124	U	-0.0684	+/-0.0465	0.0507		pCi/g		MXR1 09/29/17	1431 1702977	1
Cadmium-109	U	0.379	+/-1.33	1.38		pCi/g				
Cesium-134	U	0.00848	+/-0.0402	0.073		pCi/g				
Chromium-51	U	-0.0697	+/-0.316	0.586		pCi/g				
Cobalt-56	U	-0.0113	+/-0.0412	0.0716		pCi/g				
Cobalt-57	UI	0.00	+/-0.0789	0.158		pCi/g				
Cobalt-58	U	0.0119	+/-0.0627	0.0675		pCi/g				
Cobalt-60	•	0.531	+/-0.0773	0.0565		pCi/g				
Europium-152		6.46	+/-0.333	0.146		pCi/g				
Europium-154		0.432	+/-0.152	0.171		pCi/g				
Europium-155	U	0.0515	+/-0.109	0.197		pCi/g				
Iron-59	U	-0.0388	+/-0.0823	0.149		pCi/g				
Manganese-54	U	0.00339	+/-0.0366	0.0656		pCi/g				
Niobium-95	U	0.00558	+/-0.0407	0.0734		pCi/g				
Scandium-46	U	-0.0142	+/-0.0409	0.0703		pCi/g				
Silver-108m	U	0.00263	+/-0.024	0.0449		pCi/g				
Silver-110m	U	0.00107	+/-0.0484	0.0865		pCi/g				
Sodium-22	UI	0.00	+/-0.0535	0.105		pCi/g				
Zinc-65	U	0.0722	+/-0.101	0.178		pCi/g				
The following Prep	Methods were p	erformed:								
Method	Description	n			Analyet	Date		Time Prep Batch	1	

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	LYT1	09/22/17	0914	1702947

The following Analytical Methods were performed:

MethodDescriptionAnalyst Comments1DOE HASL 300, 4.5.2.3/Ga-01-R

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

DF: Dilution Factor
DL: Detection Limit
MDA: Minimum Detectable Activity

Lc/LC: Critical Level
PF: Prep Factor
RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Column headers are defined as follows:

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

AMPH002

AMPH002

Report Date: October 26, 2017

Company: Address:

Ameriphysics, LLC 911 Cross Park Dr.

Knoxville, Tennessee 37923

Contact: Project:

Mr. Paul Jones Ameriphysics, LLC

Client Sample ID:

1132-W5D

Sample ID:

433374015

Matrix:

Misc Solid

Collect Date:

14-SEP-17 13:55

Receive Date: Collector:

21-SEP-17 Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analyst Date	Time Batch	Method
Rad Gamma Spec A	Analysis									
Gammaspec, Gamn	na, Solid - Client	List "Dry	Weight Corre	cted"						
Antimony-124	U	0.0354	+/-0.0695	0.179		pCi/g		MXR1 09/29/17	1913 1702977	1
Cadmium-109	UI	0.00	+/-1.44	1.49		pCi/g				
Cesium-134	U	0.0231	+/-0.0516	0.100		pCi/g				
Chromium-51	U	-0.154	+/-0.355	0.679		pCi/g				
Cobalt-56	U	0.0321	+/-0.0484	0.102		pCi/g				
Cobalt-57	UI	0.00	+/-0.0923	0.179		pCi/g				
Cobalt-58	U	-0.00286	+/-0.0493	0.0963		pCi/g				
Cobalt-60	_	0.717	+/-0.152	0.0787		pCi/g				
Europium-152		3.83	+/-0.398	0.188		pCi/g				
Europium-154		0.439	+/-0.198	0.355		pCi/g				
Europium-155	U	0.0586	+/-0.106	0.213		pCi/g				
Iron-59	U	-0.0373	+/-0.109	0.201		pCi/g				
Manganese-54	U	0.00923	+/-0.0488	0.0873		pCi/g				
Niobium-95	UI	0.00	+/-0.170	0.0982		pCi/g				
Scandium-46	U	0.0101	+/-0.0444	0.0904		pCi/g				
Silver-108m	U	0.00545	+/-0.0309	0.0612		pCi/g				
Silver-110m	U	-0.0216	+/-0.0604	0.114		pCi/g				
Sodium-22	UI	0.00	+/-0.0698	0.0816		pCi/g				
Zinc-65	U	0.108	+/-0.116	0.245		pCi/g				
The following Prep	Methods were po	erformed:								
Mathad	D				A 1	Doto		T' Dran Datah		

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	LYT1	09/22/17	0914	1702947

The following Analytical Methods were performed:

Method Description

DOE HASL 300, 4.5.2.3/Ga-01-R

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 26, 2017

Ameriphysics, LLC Company: Address: 911 Cross Park Dr.

Knoxville, Tennessee 37923

Contact: Mr. Paul Jones Project: Ameriphysics, LLC

Client Sample ID: 1132-W11D Project: AMPH002 Sample ID: 433374016 Client ID: AMPH002

Matrix: Misc Solid Collect Date: 14-SEP-17 13:45 21-SEP-17 Receive Date: Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analyst Date	Time Batch	Method
Rad Gamma Spec Ar	nalysis									
Gammaspec, Gamma	a, Solid - Client	List "Dry	Weight Correc	ted"						
Antimony-124	U	0.00368	+/-0.0344	0.0951		pCi/g		MXR1 09/29/17	1914 1702977	1
Cadmium-109	U	1.11	+/-1.02	1.36		pCi/g				
Cesium-134	U	-0.0101	+/-0.0435	0.0793		pCi/g				
Chromium-51	U	-0.0618	+/-0.384	0.732		pCi/g				
Cobalt-56	U	0.00635	+/-0.0401	0.0774		pCi/g				
Cobalt-57	U	0.0204	+/-0.143	0.184		pCi/g				
Cobalt-58	U	-0.0134	+/-0.0523	0.0938		pCi/g				
Cobalt-60		0.713	+/-0.107	0.0463		pCi/g				
Europium-152		5.13	+/-0.390	0.176		pCi/g				
Europium-154		0.244	+/-0.214	0.177		pCi/g				
Europium-155	U	0.0505	+/-0.120	0.223		pCi/g				
Iron-59	U	0.0649	+/-0.0884	0.174		pCi/g				
Manganese-54	U	0.0626	+/-0.103	0.0742		pCi/g				
Niobium-95	U	-0.0305	+/-0.0502	0.0855		pCi/g				
Scandium-46	U	-0.0447	+/-0.0504	0.0829		pCi/g				
Silver-108m	U	0.00181	+/-0.0292	0.0566		pCi/g				
Silver-110m	U	-0.0225	+/-0.059	0.104		pCi/g				
Sodium-22	U	0.0862	+/-0.0754	0.111		pCi/g				
Zinc-65	U	0.022	+/-0.109	0.185		pCi/g				
The following Prep N	Methods were pe	erformed:								

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	LYT1	09/22/17	0914	1702947

The following Analytical Methods were performed:

Method Description **Analyst Comments** DOE HASL 300, 4.5.2.3/Ga-01-R

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows: DF: Dilution Factor Lc/LC: Critical Level

DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 26, 2017

Company: Ameriphysics, LLC Address: 911 Cross Park Dr.

Knoxville, Tennessee 37923

Contact: Mr. Paul Jones Project: Ameriphysics, LLC

Client Sample ID: 1132-N17D Project: AMPH002 Sample ID: 433374017 Client ID: AMPH002

Matrix: Misc Solid Collect Date: 14-SEP-17 16:10 21-SEP-17 Receive Date: Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF A	analyst Date	Time Batc	h Method
Rad Gamma Spec An	alysis										
Gammaspec, Gamma,	, Solid - Client	List "Dry	Weight Corre	cted"							
Antimony-124	U	-0.0222	+/-0.0549	0.108		pCi/g		N	MXR1 09/29/17	1915 17029	77 1
Cadmium-109	U	0.360	+/-1.36	1.21		pCi/g					
Cesium-134	U	-0.0186	+/-0.0362	0.0639		pCi/g					
Chromium-51	U	-0.0742	+/-0.317	0.614		pCi/g					
Cobalt-56	U	-0.00317	+/-0.0434 _	0.0803		pCi/g					
Cobalt-57	UI	0.00	+/-0.127	0.0416		pCi/g					
Cobalt-58	U	-0.00926	+/-0.0377	0.0692		pCi/g					
Cobalt-60		0.478	+/-0.0882	0.0281		pCi/g					
Europium-152		3.92	+/-0.323	0.146		pCi/g					
Europium-154		0.334	+/-0.116	0.289		pCi/g					
Europium-155	U	0.0486	+/-0.0954	0.185		pCi/g					
Iron-59	U	-0.0202	+/-0.0899	0.161		pCi/g					
Manganese-54	U	0.0131	+/-0.0335	0.0671		pCi/g					
Niobium-95	U	0.0323	+/-0.0408	0.084		pCi/g					
Scandium-46	U	0.0177	+/-0.0397	0.0794		pCi/g					
Silver-108m	U	0.00228	+/-0.0225	0.0452		pCi/g					
Silver-110m	U	0.00932	+/-0.0506	0.0977		pCi/g					
Sodium-22	UI	0.00	+/-0.0408	0.066		pCi/g					
Zinc-65	U	0.106	+/-0.0851	0.186		pCi/g					
The following Prep M	lethods were po	erformed:									
Method	Description	n			Analyst	Date		Time	Prep Batch		_

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	LYT1	09/22/17	0914	1702947

The following Analytical Methods were performed:

Method Description **Analyst Comments** DOE HASL 300, 4.5.2.3/Ga-01-R

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Ameriphysics, LLC 911 Cross Park Dr. Knoxville, Tennessee

Contact: Mr. Paul Jones

Workorder: 433374

Report Date: October 26, 2017

Page 1 of 5

NOM	Sample	Qual	QC	Units	RPD%	REC%	Range Anlst	Date Time
U Uncertainty	0.0238 +/-0.060	U	-0.055 +/-0.0623	pCi/g	N/A		N/A MXR1	09/29/17 19:17
U Uncertainty	-0.785 +/-0.773	U	0.494 +/-0.762	pCi/g	N/A		N/A	
U Uncertainty	0.0642 +/-0.052	U	-0.0256 +/-0.0585	pCi/g	N/A		N/A	
U Uncertainty	-0.218 +/-0.365	U	-0.0966 +/-0.452	pCi/g	N/A		N/A	
U Uncertainty	-0.0179 +/-0.0568	U	0.0378 +/-0.0725	pCi/g	N/A		N/A	
UI Uncertainty	0.00 +/-0.0965	UI	0.00 +/-0.155	pCi/g	N/A		N/A	
U Uncertainty	0.0414 +/-0.0563	U	0.089 +/-0.119	pCi/g	N/A		N/A	
Uncertainty	0.766 +/-0.137		0.636 +/-0.144	pCi/g	18.6		(0%-20%)	
Uncertainty	4.37 +/-0.438		4.78 +/-0.411	pCi/g	8.83		(0%-20%)	
U Uncertainty	0.102 +/-0.149	U	0.259 +/-0.283	pCi/g	N/A		N/A	
U Uncertainty	0.00664 +/-0.117	U	-0.0178 +/-0.113	pCi/g	N/A		N/A	
U Uncertainty	0.0492 +/-0.121	U	0.0201 +/-0.152	pCi/g	N/A		N/A	
U Uncertainty	0.0197 +/-0.0442	U	-0.0151 +/-0.0671	pCi/g	N/A		N/A	
U Uncertainty	-0.0242 +/-0.0681	U	0.0544 +/-0.0588	pCi/g	N/A		N/A	
	Uncertainty Uncertainty	U 0.0238 Uncertainty +/-0.060 U -0.785 Uncertainty +/-0.773 U 0.0642 Uncertainty +/-0.052 U -0.218 Uncertainty +/-0.365 U -0.0179 Uncertainty +/-0.0568 UI 0.00 Uncertainty +/-0.0965 U 0.0414 Uncertainty +/-0.0563 0.766 Uncertainty +/-0.137 4.37 Uncertainty +/-0.438 U 0.102 Uncertainty +/-0.449 U 0.00664 Uncertainty +/-0.117 U 0.0492 Uncertainty +/-0.121 U 0.0197 Uncertainty +/-0.0442 U -0.0242	U 0.0238 U +/-0.060 U -0.785 U U -0.773 U 0.0642 U U -0.218 U U -0.218 U U -0.365 U -0.218 U U -0.365 U -0.0179 U U -0.0568 UI 0.00 UI U -0.0965 U 0.0414 U U -0.0563 U 0.766 U -0.137 U 0.766 U -0.137 U 0.766 U -0.137 U 0.102 U U -0.438 U 0.102 U U -0.149 U 0.00664 U -0.149 U 0.00664 U -0.149	U 0.0238 U -0.055 Uncertainty +/-0.060	U 0.0238 U -0.055 pCi/g Uncertainty +/-0.060	U 0.0238 U -0.055 pCi/g N/A Uncertainty +/-0.060 +/-0.0623 pCi/g N/A U -0.785 U 0.494 pCi/g N/A Uncertainty +/-0.773 +/-0.762 pCi/g N/A Uncertainty +/-0.052 +/-0.0585 pCi/g N/A Uncertainty +/-0.052 +/-0.0585 pCi/g N/A Uncertainty +/-0.052 +/-0.0585 pCi/g N/A Uncertainty +/-0.365 +/-0.0585 pCi/g N/A Uncertainty +/-0.0568 +/-0.0725 pCi/g N/A Uncertainty +/-0.0568 +/-0.0725 pCi/g N/A Uncertainty +/-0.0568 +/-0.0725 pCi/g N/A Uncertainty +/-0.0965 +/-0.155 pCi/g N/A Uncertainty +/-0.0563 +/-0.119 pCi/g N/A Uncertainty +/-0.137 +/-0.119 pCi/g N/A Uncertainty +/-0.438 +/-0.411 pCi/g N/A Uncertainty +/-0.438 +/-0.411 pCi/g N/A Uncertainty +/-0.149 +/-0.283 pCi/g N/A Uncertainty +/-0.149 +/-0.283 pCi/g N/A Uncertainty +/-0.117 +/-0.113 pCi/g N/A Uncertainty +/-0.117 +/-0.152 pCi/g N/A Uncertainty +/-0.121 +/-0.152 pCi/g N/A Uncertainty +/-0.0442 +/-0.0671 pCi/g N/A Uncertainty +/-0.0442 +/-0.0671	U 0.0238 U -0.055 pCi/g N/A Uncertainty +/-0.060 +/-0.0623 U -0.785 U 0.494 pCi/g N/A Uncertainty +/-0.773 +/-0.762 U 0.0642 U -0.0256 pCi/g N/A Uncertainty +/-0.052 +/-0.0585 U -0.218 U -0.0966 pCi/g N/A Uncertainty +/-0.365 +/-0.452 U -0.0179 U 0.0378 pCi/g N/A Uncertainty +/-0.0568 +/-0.0725 UI 0.00 UI 0.00 pCi/g N/A Uncertainty +/-0.0965 +/-0.155 U 0.0414 U 0.089 pCi/g N/A Uncertainty +/-0.0563 +/-0.119 U 0.0414 U 0.089 pCi/g N/A Uncertainty +/-0.137 +/-0.144 U 0.0766 0.636 pCi/g 18.6 Uncertainty +/-0.438 +/-0.114 U 0.102 U 0.259 pCi/g N/A Uncertainty +/-0.438 +/-0.411 U 0.00664 U 0.259 pCi/g N/A Uncertainty +/-0.149 +/-0.283 U 0.00664 U 0.0178 pCi/g N/A Uncertainty +/-0.117 +/-0.113 U 0.0492 U 0.0201 pCi/g N/A Uncertainty +/-0.121 +/-0.152 U 0.0197 U 0.0151 pCi/g N/A Uncertainty +/-0.0442 +/-0.0671 U 0.0242 U 0.0544 pCi/g N/A	U 0.0238 U -0.055 pCi/g N/A N/AMXR1 Uncertainty +/-0.060

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 433374 Page 2 of 5 **Parmname** NOM Sample Qual \mathbf{QC} Units RPD% REC% Range Anlst Date Time Rad Gamma Spec 1702977 Batch Scandium-46 U -0.0103 U -0.0727 pCi/g N/A N/A MXR1 09/29/17 19:17 +/-0.0597 Uncertainty +/-0.081Silver-108m U -0.00366 U -0.0169 pCi/g N/A N/A Uncertainty +/-0.0327 +/-0.0426 Silver-110m 0.00734 0.0633pCi/g N/A N/A Uncertainty +/-0.0793 +/-0.162Sodium-22 U 0.0292 U 0.0913 pCi/g N/A N/A +/-0.0536 +/-0.0999 Uncertainty pCi/g Zinc-65 U -0.0788U -0.0295 N/A N/A +/-0.158 Uncertainty +/-0.169QC1203880742 LCS pCi/g Americium-241 488 542 111 (75% - 125%)09/29/17 14:02 +/-5.03Uncertainty Cesium-137 175 183 pCi/g 104 (75%-125%) Uncertainty +/-3.08U Antimony-124 0.185pCi/g Uncertainty +/-0.558Cadmium-109 231 pCi/g Uncertainty +/-14.7U Cesium-134 0.225 pCi/g Uncertainty +/-0.614 Chromium-51 U 0.731 pCi/g Uncertainty +/-3.54 U Cobalt-56 -0.219 pCi/g +/-0.592 Uncertainty Cobalt-57 0.586 pCi/g Uncertainty +/-0.291U Cobalt-58 -0.238 pCi/g Uncertainty +/-0.514Cobalt-60 141 140 pCi/g (75% - 125%)Uncertainty +/-3.24

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 433374 Page 3 of 5 QC **Parmname** NOM Sample Qual Units RPD% REC% Range Anlst Date Time Rad Gamma Spec 1702977 Batch Europium-152 U 0.762 pCi/g MXR1 09/29/17 14:02 +/-1.20Uncertainty U Europium-154 -0.108pCi/g Uncertainty +/-0.937U Europium-155 -0.0348 pCi/g Uncertainty +/-0.752U Iron-59 0.0971 pCi/g +/-1.27 Uncertainty U Manganese-54 0.071pCi/g Uncertainty +/-0.533U Niobium-95 0.103pCi/g Uncertainty +/-0.461Scandium-46 U -0.138 pCi/g +/-0.627 Uncertainty U -0.00623 Silver-108m pCi/g Uncertainty +/-0.442U Silver-110m 0.634 pCi/g Uncertainty +/-0.831 Sodium-22 U -0.0379 pCi/g Uncertainty +/-0.329 U 2.17 pCi/g Zinc-65 Uncertainty +/-1.98QC1203880740 MB U -0.00354 09/29/17 19:16 Antimony-124 pCi/g +/-0.0593 Uncertainty Cadmium-109 U -0.469 pCi/g Uncertainty +/-0.394Cesium-134 U 0.0041 pCi/g Uncertainty +/-0.016Chromium-51 U 0.0847 pCi/g

+/-0.167

Uncertainty

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

433374 Page 4 of 5 **Parmname** NOM Sample Qual \mathbf{QC} Units RPD% REC% Range Anlst Date Time Rad Gamma Spec 1702977 Batch Cobalt-56 U 0.00331 pCi/g MXR1 09/29/17 19:16 Uncertainty +/-0.0203 U -0.00441pCi/g Cobalt-57 +/-0.0133 Uncertainty Cobalt-58 U 0.0107 pCi/g Uncertainty +/-0.0172U Cobalt-60 -0.00861 pCi/g +/-0.0218 Uncertainty U Europium-152 0.0216 pCi/g Uncertainty +/-0.0536 Europium-154 U -0.0318 pCi/g Uncertainty +/-0.044U Europium-155 -0.0252 pCi/g +/-0.0528 Uncertainty U -0.0384 pCi/g Iron-59 Uncertainty +/-0.0335 U 0.0125 Manganese-54 pCi/g Uncertainty +/-0.0199 Niobium-95 U 0.0158 pCi/g Uncertainty +/-0.0181U Scandium-46 0.00451pCi/g Uncertainty +/-0.0162 Silver-108m U 0.0286 pCi/g Uncertainty +/-0.0144 U Silver-110m -0.0195 pCi/g +/-0.0363 Uncertainty Sodium-22 U -0.0121 pCi/g +/-0.0149 Uncertainty U 0.00266Zinc-65 pCi/g Uncertainty +/-0.042

Notes:

Workorder:

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

433374 Page 5 of 5 Parmname **NOM** Sample Qual OC Units RPD% REC% Range Anlst Date Time

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

The Qualifiers in this report are defined as follows:

- Analyte is a Tracer compound
- < Result is less than value reported
- > Result is greater than value reported
- BD Results are either below the MDC or tracer recovery is low
- FA Failed analysis.

Workorder:

- Analytical holding time was exceeded Η
- J Value is estimated
- K Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- L Analyte present. Reported value may be biased low. Actual value is expected to be higher.
- M if above MDC and less than LLD M
- M REMP Result > MDC/CL and < RDL
- N/A RPD or %Recovery limits do not apply.
- N1 See case narrative
- ND Analyte concentration is not detected above the detection limit
- Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier NJ
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- UJ Gamma Spectroscopy--Uncertain identification
- UL Not considered detected. The associated number is the reported concentration, which may be inaccurate due to a low bias.
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- ٨ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- h Preparation or preservation holding time was exceeded

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.
- * Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

e 25		Ame	Ameriphysics, LLC	s, LLC							Chai	Chain of Custody (COC)	y (COC)			
of		2 40	1000000					Doc			QAF 14-1	4-1	Rev #	_		
33		E. E. E.	AA rrogram rom					Date			2/10/2015	015	Form #	-		
	Project Number:	ject 1132 Jer:	Prc	Project Name: UT Health	: UT Heal	II.			-8∆		·····			7	11/4	
	Send Report To:	Send Ameriphysics, LLC	ysics, LL	C	The state of the s			p	54, Fe b-95,					イヨンのし、	<i>></i>	
ī	Addre	Address: 9111 Cross Park Drive, Suite D200, Knoxville, TN	s Park D	rive, Suit	e D200, K	noxville,	TN 37923	3	., Mn-! 65, VI 6s-13	!						
noi	Phoi	Phone: (865)705-1136	-1136	H	Fax:			noi nos	, Cr-51 o, Zn- b-124,				<u></u>	Page 1	of 2	ı
loo2	Sampler (Print Name):	umpler (Print Robbie Hansen Vame):	ansen					Sect Sect Sects	22, Sc-46, -58, Co-6 5d-109, Sl -154, and	True Po	A/N A/N	A/N	order #:		N/A	
	Shipment Method:	ent FedEx	4	Airbill Number:	bill er:			ı.A	2 (Na-2 57, Co 10M, C	īV			Batc	Batch #:	1132-002	-
	Laboratory Receiving:	ory GEL Laboratories	oratori						-op '9!							
	Sample ID	Sample Description	Sample Date	Sample Time	Sample Matrix	Sample Volume	Cont. Type	Cont. Quantity	Co-E				Comments, Special Instructions, etc.		Lab Sample ID (to be completed by lab	le ID ed by lab
	1132-E2 (1-6)	Concrete Sample	9/14/17	15:35	S	0.5 L	Ъ	Ħ	X	X						
	1132-E4 (1-6)	Concrete Sample	9/14/17	15:15	S	0.5 L	Ъ	1	X	×						
	1132-E9 (1-6)	Concrete Sample	9/14/17	15:25	S	0.5 L	P	1	X	X						
z noit:	1132-E17 (1-6)	Concrete Sample	9/14/17	15:50	S	0.5 L	A	· н	×	×			,			
)9S	1132-N17 (1-6)	Concrete Sample	9/14/17	16:00	တ	0.5 L	P	-	X	X				-		
	1132- N20 (1- 6)	Concrete Sample	9/14/17	16:20	S	0.5 L	Ъ	1	X	X						
	1132- N23 (1- 6)	Concrete Sample	9/14/17	16:30	S	0.5 L	Д	1	×	X						
	1132- N23 (1- 6)	Concrete Sample	9/14/17	16:40	S	0.5 L	Ъ	H	X	X						
Relinguished by:	shed by:	(Signature)		Received by: (Signature)	by: (Sig	nature)		Date		Time:	Sampl	e Custodian R	Sample Custodian Remarks (Completed By laboratory):	By laborato	ory):	
N	ずる	<u>_</u>		the state of	8			OF THE	12/12	2,00	0	QA/QC level	Turnaround	Sar	Sample Receipt	
Relinqui	shed by:	Relinquished by: (Signature)		Received by: (Signature)	by: (Sig	nature)		Date:		Time:	_ Level I	I le	Routine	Total # Containers Received?	ainers	
									***************************************		Level II	ПП	24 Hour	COC Seals Present?	resent?	
Relinqui	shed by:	Relinquished by: (Signature)		Received by: (Signature)	by: (Sig	nature)	Service I	Date:	<u> </u>	Time:	- Level III Other	l III er	1 Week Other:	Received Containers Intact?	ntact? ntainers	
											ı			Temperature?	3.5	

Ameriphysics, LLC		Chain of Custody (COC)	tody (COC)	
	Doc	QAF 14-1	Rev #	_
An riogiam rom	Date	2/10/2015	Form #	_

SUPPLEMENTAL SECTION 2

Page 2 of 2 Batch #: 1132-002

				1										
×	×	X	×	X	X	X	×	×						
×	×	×	×	×	×	×	×	×						
н	H	, - 4		,(y i		H	· 4						
Ъ	А	Ъ	Ъ	Ъ	Ъ	P.	Ъ	Ъ						
0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	7		***************************************			
S	S	S	S	S	S	S	S	S						
16:50	8:30	8:50	00:6	9:20	11:35	13:55	13:45	16:10						
9/14/17	9/15/17	9/1517	9/15/17	9/15/17	9/14/17	9/14/17	9/14/17	9/14/17			-	,		
Concrete Sample	Concrete Sample	Concrete Sample	Concrete Sample	Concrete Sample	Concrete Sample	Concrete Sample	Concrete Sample	Concrete Sample						
1132-N30 (1-6)	1132-S19 (1-6)	1132-S21 (1-6)	1132-S26 (1-6)	1132-840 (1-6)	1132-F72D	1132-W5D	1132-W11D	1132-N17D						
	Concrete Sample $9/14/17$ $16:50$ S $0.5 L$ P 1 X	Concrete Sample 9/14/17 16:50 S 0.5 L P 1 X Concrete Sample 9/15/17 8:30 S 0.5 L P 1 X	Concrete Sample 9/14/17 16:50 S 0.5 L P 1 X Concrete Sample 9/15/17 8:30 S 0.5 L P 1 X Concrete Sample 9/15/17 8:50 S 0.5 L P 1 X	Concrete Sample 9/14/17 16:50 S 0.5 L P 1 X Concrete Sample 9/15/17 8:30 S 0.5 L P 1 X Concrete Sample 9/15/17 8:50 S 0.5 L P 1 X Concrete Sample 9/15/17 9:00 S 0.5 L P 1 X	Concrete Sample 9/14/17 16:50 S 0.5 L P 1 X Concrete Sample 9/15/17 8:30 S 0.5 L P 1 X Concrete Sample 9/15/17 8:50 S 0.5 L P 1 X Concrete Sample 9/15/17 9:20 S 0.5 L P 1 X Concrete Sample 9/15/17 9:20 S 0.5 L P 1 X Sample Sample 9/15/17 9:20 S 0.5 L P 1 X	Concrete Sample 9/14/17 16:50 S 0.5 L P 1 X Concrete Sample 9/15/17 8:30 S 0.5 L P 1 X Concrete Sample 9/15/17 8:50 S 0.5 L P 1 X Concrete Sample 9/15/17 9:20 S 0.5 L P 1 X Concrete Sample 9/15/17 9:20 S 0.5 L P 1 X Concrete Sample 9/14/17 11:35 S 0.5 L P 1 X	1132-N30 (1-6) Concrete Sample 9/14/17 16:50 S 0.5 L P 1 X 1132-S19 (1-6) Concrete Sample 9/15/17 8:30 S 0.5 L P 1 X 1132-S21 (1-6) Sample 9/15/17 9:00 S 0.5 L P 1 X 1132-S26 (1-6) Sample 9/15/17 9:00 S 0.5 L P 1 X 1132-S40 (1-6) Sample 9/15/17 9:20 S 0.5 L P 1 X 1132-F72D Concrete 9/14/17 11:35 S 0.5 L P 1 X 1132-W5D Concrete 9/14/17 13:55 S 0.5 L P 1 X	Concrete 9/14/17 16:50 S 0.5 L P 1 X X Sample 9/15/17 8:30 S 0.5 L P 1 X X Concrete 9/15/17 8:50 S 0.5 L P 1 X X Sample 9/15/17 9:00 S 0.5 L P 1 X X Concrete 9/15/17 9:20 S 0.5 L P 1 X X Concrete 9/14/17 11:35 S 0.5 L P 1 X X X Concrete 9/14/17 13:55 S 0.5 L P 1 X X X Concrete 9/14/17 13:55 S 0.5 L P 1 X X X X X X X X X X X X X X X X X X	132-N30 (1-6) Concrete Sample Sample 9/14/17 16:50 S 0.5 L P 1 X 1132-S19 (1-6) Concrete Sample Sample 9/15/17 8:30 S 0.5 L P 1 X 1132-S26 (1-6) Concrete Sample Sample 9/15/17 9:20 S 0.5 L P 1 X 1132-S40 (1-6) Concrete Sample 9/15/17 9:20 S 0.5 L P 1 X 1132-N2D Concrete Sample 9/14/17 11:35 S 0.5 L P 1 X 1132-W11D Concrete Sample 9/14/17 13:45 S 0.5 L P 1 X 1132-W11D Concrete Sample 9/14/17 13:45 S 0.5 L P 1 X 1132-W11D Concrete Sample 9/14/17 13:45 S 0.5 L P 1 X 1132-N17D Concrete Sample 9/14/17 16:10 S 0.5 L P 1	1132-N30 (1-6) Concrete Sample Sample 9/14/17 16:50 S 0.5 L P 1 X 1132-S19 (1-6) Sample Sample 9/15/17 8:30 S 0.5 L P 1 X 1132-S21 (1-6) Concrete Sample 9/15/17 9:00 S 0.5 L P 1 X 1132-S26 (1-6) Concrete Sample 9/15/17 9:20 S 0.5 L P 1 X 1132-S40 (1-6) Sample 9/14/17 11:35 S 0.5 L P 1 X 1132-M1D Concrete Sample 9/14/17 13:45 S 0.5 L P 1 X 1132-W1D Concrete Sample 9/14/17 13:45 S 0.5 L P 1 X 1132-W1D Concrete Sample 9/14/17 16:10 S 0.5 L P 1 X 1132-W1D Sample 9/14/17 16:10 S 0.5 L P 1 X <td>1132-N30 (1-6) Concrete Sample Sample 9/14/17 16:50 S 0.5 L P 1 X 1132-S19 (1-6) Concrete Sample 9/15/17 8:30 S 0.5 L P 1 X 1132-S21 (1-6) Concrete Sample 9/15/17 8:50 S 0.5 L P 1 X 1132-S26 (1-6) Sample 9/15/17 9:00 S 0.5 L P 1 X 1132-S26 (1-6) Sample 9/15/17 9:20 S 0.5 L P 1 X 1132-S40 (1-6) Sample 9/14/17 11:35 S 0.5 L P 1 X 1132-W5D Concrete 9/14/17 13:45 S 0.5 L P 1 X 1132-W17D Concrete 9/14/17 16:10 S 0.5 L P 1 X 1132-W17D Sample 9/14/17 16:10 S 0.5 L P 1 X</td> <td>1132-N30 (1-6) Concrete Sample 9/14/17 16:50 S 0.5 L P 1 X 1132-S19 (1-6) Sample Sample 9/15/17 8:30 S 0.5 L P 1 X 1132-S21 (1-6) Sample Sample 9/15/17 9:00 S 0.5 L P 1 X 1132-S26 (1-6) Concrete Sample 9/15/17 9:20 S 0.5 L P 1 X 1132-S40 (1-6) Concrete Sample 9/14/17 11:35 S 0.5 L P 1 X 1132-N1D Concrete Sample 9/14/17 13:45 S 0.5 L P 1 X 1132-W1D Concrete Sample 9/14/17 13:45 S 0.5 L P 1 X 1132-N17D Concrete Sample 9/14/17 16:10 S 0.5 L P 1 X 1132-N17D Concrete Sample 9/14/17 16:10 S 0.5 L P 1 X</td> <td>1132-N30 (1-6) Concrete Sample 9/44/17 16:50 S 0.5 L P 1 X 1132-S19 (1-6) Concrete Sample 9/15/17 8:30 S 0.5 L P 1 X 1132-S21 (1-6) Concrete Sample 9/15/17 9:00 S 0.5 L P 1 X 1132-S26 (1-6) Concrete Sample 9/14/17 11:35 S 0.5 L P 1 X 1132-N2D Concrete Sample 9/14/17 13:55 S 0.5 L P 1 X 1132-N17D Concrete Sample 9/14/17 13:45 S 0.5 L P 1 X 1132-N17D Concrete Sample 9/14/17 16:10 S 0.5 L P 1 X 1132-N17D Concrete Sample 9/14/17 16:10 S 0.5 L P 1 X 1132-N17D Concrete Sample 9/14/17 16:10 S 0.5 L P 1 X</td> <td> 132-N30 (1-6) Concrete 9/14/17 16:50 S 0.5 L P 1 X 132-S19 (1-6) Concrete 9/15/17 8:30 S 0.5 L P 1 X 132-S21 (1-6) Concrete 9/15/17 8:50 S 0.5 L P 1 X 132-S22 (1-6) Concrete 9/15/17 9:00 S 0.5 L P 1 X 132-S26 (1-6) Concrete 9/15/17 9:20 S 0.5 L P 1 X 132-N3D Concrete 9/14/17 13:35 S 0.5 L P 1 X 132-N17D Concrete 9/14/17 13:45 S 0.5 L P 1 X 132-N17D Concrete 9/14/17 13:45 S 0.5 L P 1 X 132-N17D Sample 9/14/17 16:10 S 0.5 L P 1 X 133-N17D Sample 9/14</td>	1132-N30 (1-6) Concrete Sample Sample 9/14/17 16:50 S 0.5 L P 1 X 1132-S19 (1-6) Concrete Sample 9/15/17 8:30 S 0.5 L P 1 X 1132-S21 (1-6) Concrete Sample 9/15/17 8:50 S 0.5 L P 1 X 1132-S26 (1-6) Sample 9/15/17 9:00 S 0.5 L P 1 X 1132-S26 (1-6) Sample 9/15/17 9:20 S 0.5 L P 1 X 1132-S40 (1-6) Sample 9/14/17 11:35 S 0.5 L P 1 X 1132-W5D Concrete 9/14/17 13:45 S 0.5 L P 1 X 1132-W17D Concrete 9/14/17 16:10 S 0.5 L P 1 X 1132-W17D Sample 9/14/17 16:10 S 0.5 L P 1 X	1132-N30 (1-6) Concrete Sample 9/14/17 16:50 S 0.5 L P 1 X 1132-S19 (1-6) Sample Sample 9/15/17 8:30 S 0.5 L P 1 X 1132-S21 (1-6) Sample Sample 9/15/17 9:00 S 0.5 L P 1 X 1132-S26 (1-6) Concrete Sample 9/15/17 9:20 S 0.5 L P 1 X 1132-S40 (1-6) Concrete Sample 9/14/17 11:35 S 0.5 L P 1 X 1132-N1D Concrete Sample 9/14/17 13:45 S 0.5 L P 1 X 1132-W1D Concrete Sample 9/14/17 13:45 S 0.5 L P 1 X 1132-N17D Concrete Sample 9/14/17 16:10 S 0.5 L P 1 X 1132-N17D Concrete Sample 9/14/17 16:10 S 0.5 L P 1 X	1132-N30 (1-6) Concrete Sample 9/44/17 16:50 S 0.5 L P 1 X 1132-S19 (1-6) Concrete Sample 9/15/17 8:30 S 0.5 L P 1 X 1132-S21 (1-6) Concrete Sample 9/15/17 9:00 S 0.5 L P 1 X 1132-S26 (1-6) Concrete Sample 9/14/17 11:35 S 0.5 L P 1 X 1132-N2D Concrete Sample 9/14/17 13:55 S 0.5 L P 1 X 1132-N17D Concrete Sample 9/14/17 13:45 S 0.5 L P 1 X 1132-N17D Concrete Sample 9/14/17 16:10 S 0.5 L P 1 X 1132-N17D Concrete Sample 9/14/17 16:10 S 0.5 L P 1 X 1132-N17D Concrete Sample 9/14/17 16:10 S 0.5 L P 1 X	132-N30 (1-6) Concrete 9/14/17 16:50 S 0.5 L P 1 X 132-S19 (1-6) Concrete 9/15/17 8:30 S 0.5 L P 1 X 132-S21 (1-6) Concrete 9/15/17 8:50 S 0.5 L P 1 X 132-S22 (1-6) Concrete 9/15/17 9:00 S 0.5 L P 1 X 132-S26 (1-6) Concrete 9/15/17 9:20 S 0.5 L P 1 X 132-N3D Concrete 9/14/17 13:35 S 0.5 L P 1 X 132-N17D Concrete 9/14/17 13:45 S 0.5 L P 1 X 132-N17D Concrete 9/14/17 13:45 S 0.5 L P 1 X 132-N17D Sample 9/14/17 16:10 S 0.5 L P 1 X 133-N17D Sample 9/14

SAMPLE RECEIPT & REVIEW FORM

Clie	nt:			SDC	:/AR/COC/Work Order:
Rec	eived By: Itacy, Boone			Dat	e Received: 21-5EPT-17
					Circle Applicable: FedEx Express FedEx Ground UPS Field Services Courier Other
	Carrier and Tracking Number				7877 8470 3300 - 21c
	•				7877 8470 3310 - Zic
Susp	ected Hazard Information	Yes	ŝ		Vet Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further stigation.
Ship	ped as a DOT Hazardous?		L		ard Class Shipped: UN#:
	:/Samples marked or classified as active?		بى	Clas	imum Net Counts Observed* (Observed Counts - Area Background Counts):CPM / mR/Hr sified as: Rad 1 Rad 2 Rad 3
Is pa	ckage, COC, and/or Samples marked HAZ?			If ye PCB	s, select Hazards below, and contact the GEL Safety Group. 's Flammable Foreign Soil RCRA Asbestos Beryllium Other:
	Sample Receipt Criteria	Yes	NA	ν	Comments/Qualifiers (Required for Non-Conforming Items)
1	Shipping containers received intact and sealed?	V			Circle Applicable: Seals broken Damaged container Leaking container Other (describe) .
2	Chain of custody documents included with shipment?	/			
3	Samples requiring cold preservation within $(0 \le 6 \text{ deg. C})$?*		/	Ì	Preservation Method: Wet Ice Ice Packs Dry ice None Other: *all temperatures are recorded in Celsius TEMP:
4	Daily check performed and passed on IR temperature gun?	V			Temperature Device Serial #: 1R3-17 Secondary Temperature Device Serial # (If Applicable):
5	Sample containers intact and sealed?	/			Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
6	Samples requiring chemical preservation at proper pH?		~	1	Sample ID's and Containers Affected: If Preservation added, Lot#:
7	Do any samples require Volatile Analysis?			/	If Yes, Are Encores or Soil Kits present? Yes No (If yes, take to VOA Freezer) Do VOA vials contain acid preservation? Yes No N/A (If unknown, select No) VOA vials free of headspace? Yes No N/A Sample ID's and containers affected:
8	Samples received within holding time?	1			ID's and tests affected:
9	Sample ID's on COC match ID's on bottles?	/		ઝ	Sample ID's and containers affected:
10	Date & time on COC match date & time on bottles?	1			Sample ID's affected:
11	Number of containers received match number indicated on COC?	/			Sample ID's affected:
12	Are sample containers identifiable as GEL provided?			/	
13	COC form is properly signed in relinquished/received sections?	/			·
Con	ments (Use Continuation Form if needed);				
					·
. ,	er e				
					, ,
L	PM (or PMA) revie	w: In	itials	·	M Date 9/2///7 Page of

GL-CHL-SR-001 Rev 5

Subject: Re: Questions on detected radionuclides

From: Edie Kent <emk@gel.com>

Date: 10/26/2017 1:19 PM

To: Tim Pratt <tpratt@ameriphysics.com>

CC: Nancy Mattern < Nancy. Mattern@gel.com>

Tim:

The Na-22 and Cd-109 results were intended to be rejected but were not qualified properly. The Co-57 was a false positive and should have been reported as rejected. We are in the process of correcting this and will issue a revised report.

Edie

On 10/25/2017 2:54 PM, Tim Pratt wrote:

Edie,

The ones I question are Sample 1132-F20 (1-6) with the Na-22; Sample 1132-W5D (1-6) with the Cd-109; and Samples 1132-F52 (1-6), 1132-F56 (1-6), 1132-C52 (1-6), 1132-W3 (1-6), and 1132-W17 (1-6) with the Co-57.

As I mentioned, with the short relatively short half-lives of these radionuclides and the time that has elapsed since this place was operational (2001), there is very little chance that these are really there.

Thanks,

Tim

Timothy J. Pratt Corporate Radiation Safety Officer Ameriphysics LLC 9111 Cross Park Drive, Suite D200 Knoxville, TN 37923

Office: 865-470-4171 Cell: 865-386-8066 Fax: 865-470-4179

--

Edith M. Kent Project Manager

2040 Savage Road, Charleston, SC 29407 | PO Box 30712, Charleston, SC 29417 Office Direct: 843.769.7385 | Office Main: 843.556.8171 | Fax: 843.766.1178

E-Mail: emk@gel.com | Website: www.gel.com

Re: Questions on detected radionuclides

Environmental | Engineering | Surveying | Analytical Testing

Page 29 of 33

of 2 10/26/2017 1:19 PM

List of current GEL Certifications as of 02 October 2017

State	Certification
Alaska	UST-0110
Arkansas	88-0651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
Delaware	SC00012
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho Chemistry	SC00012
Idaho Radiochemistry	SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	90129
Kentucky Wastewater	90129
Louisiana NELAP	03046 (AI33904)
Louisiana SDWA	LA170010
Maryland	270
Massachusetts	M-SC012
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	SC000122018-1
New Hampshire NELAP	205415
New Jersey NELAP	SC002
New Mexico	SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	9904
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S.Carolina Radchem	10120002
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235-17-12
Utah NELAP	SC000122017-23
Vermont	VT87156
Virginia NELAP	460202
Washington	C780
West Virginia	997404

Radiochemistry Technical Case Narrative Ameriphysics, LLC (AMPH) SDG #: 433374

Product: Dry Weight

Preparation Method: Dry Soil Prep

Preparation Procedure: GL-RAD-A-021 REV# 21

Preparation Batch: 1702947

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
433374001	1132-E2 (1-6)
433374002	1132-E4 (1-6)
433374003	1132-E9 (1-6)
433374004	1132-E17 (1-6)
433374005	1132-N17 (1-6)
433374006	1132-N20 (1-6)
433374007	1132-N23 (1-6)
433374008	1132-N23 (1-6)
433374009	1132-N30 (1-6)
433374010	1132-S19 (1-6)
433374011	1132-S21 (1-6)
433374012	1132-S26 (1-6)
433374013	1132-S40 (1-6)
433374014	1132-F72D
433374015	1132-W5D
433374016	1132-W11D
433374017	1132-N17D

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

<u>Product:</u> Gammaspec, Gamma, Solid - Client List <u>Analytical Method:</u> DOE HASL 300, 4.5.2.3/Ga-01-R <u>Analytical Procedure:</u> GL-RAD-A-013 REV# 27

Analytical Batch: 1702977

Preparation Method: Dry Soil Prep

Preparation Procedure: GL-RAD-A-021 REV# 21

Preparation Batch: 1702947

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
433374001	1132-E2 (1-6)
433374002	1132-E4 (1-6)
433374003	1132-E9 (1-6)
433374004	1132-E17 (1-6)
433374005	1132-N17 (1-6)
433374006	1132-N20 (1-6)
433374007	1132-N23 (1-6)
433374008	1132-N23 (1-6)
433374009	1132-N30 (1-6)
433374010	1132-S19 (1-6)
433374011	1132-S21 (1-6)
433374012	1132-S26 (1-6)
433374013	1132-S40 (1-6)
433374014	1132-F72D
433374015	1132-W5D
433374016	1132-W11D
433374017	1132-N17D
1203880740	Method Blank (MB)
1203880741	433373021(1132-W19 (1-6)) Sample Duplicate (DUP)
1203880742	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on a "dry weight" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Qualifier Information

Qualifier	Reason	Analyte	Sample	Client Sample
UI	Results are considered a false positive due to high counting uncertainty.	Cadmium-109	433374015	1132-W5D
		Cobalt-57	433374002	1132-E4 (1-6)
			433374003	1132-E9 (1-6)
			433374006	1132-N20 (1-6)
			433374008	1132-N23 (1-6)
			433374009	1132-N30 (1-6)
			433374013	1132-S40 (1-6)
			433374017	1132-N17D

			1203880741	1132-W19 (1-6)(433373021DUP)
		Europium-154	433374005	1132-N17 (1-6)
UI	Results are considered a false positive due to high peak-width.	Niobium-95	433374015	1132-W5D
UI	Results are considered a false positive due to interference.	Cobalt-57	433374010	1132-S19 (1-6)
		Sodium-22	433374004	1132-E17 (1-6)
			433374009	1132-N30 (1-6)
			433374011	1132-S21 (1-6)
			433374015	1132-W5D
			433374017	1132-N17D
UI	Results are considered a false positive due to low abundance.	Cobalt-57	433374001	1132-E2 (1-6)
			433374011	1132-S21 (1-6)
			433374014	1132-F72D
			433374015	1132-W5D
		Europium-154	433374004	1132-E17 (1-6)
			433374009	1132-N30 (1-6)
		Sodium-22	433374014	1132-F72D

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

ATTACHMENT 3 REDRAD-BUILD Reports

Title : Sample F51 0-6 inches

Input File : C:\RESRAD_Family\BUILD\3.5\UTHealth.bld

RESRAD-BUILD Table of Contents

RESRAD-BUILD Input Parameters	2
Building Information	3
Source Information	4
For time = $0.00E+00$ yr	
Time Specific Parameters	į
Receptor-Source Dose Summary	(
Dose by Pathway Detail	-
Dose by Nuclide Detail	8
For time = 1.00E+00 yr	
Time Specific Parameters	9
Receptor-Source Dose Summary	10
Dose by Pathway Detail	1:
Dose by Nuclide Detail	12
For time = 1.00E+01 yr	
Time Specific Parameters	13
Receptor-Source Dose Summary	14
Dose by Pathway Detail	15
Dose by Nuclide Detail	1
For time = 1.00E+02 yr	
Time Specific Parameters	1
Receptor-Source Dose Summary	18
Dose by Pathway Detail	19
Dose by Nuclide Detail	20
For time = 1.00E+03 yr	
Time Specific Parameters	2:
Receptor-Source Dose Summary	22
Dose by Pathway Detail	23
Dose by Nuclide Detail	24
Full Summary	25

** RESRAD-BUILD Dose Program Output, Version 3.50 10/26/17 16:25:54 Page: 2 ** Title : Sample F51 0-6 inches Input File : C:\RESRAD_Family\BUILD\3.5\UTHealth.bld RESRAD-BUILD Input Parameters Number of Sources : 1 Number of Receptors: 1 Total Time : 3.650000E+02 days Fraction Inside : 5.000000E-01 Receptor Information z FracTime Inhalation Ingestion(Dust) Receptor Room X У [m] [m3/day] [m2/hr] [m] [m] 1.000 1.000 1.000 1.000 1.80E+01 1.00E-04 == Receptor-Source Shielding Relationship === Receptor Source Density Thickness Material [g/cm3] [cm]

1 1 2.40E+00 0.00E+00 Concrete

** RESRAD-BUILD Dose Program Output, Version 3.50 10/26/17 16:25:54 Page: 3 ** **

Title : Sample F51 0-6 inches

Input File : C:\RESRAD_Family\BUILD\3.5\UTHealth.bld

Building Air Exchange Rate: 8.00E-01 1/hr

Deposition velocity: 1.00E-02 [m/s] Resuspension Rate: 5.00E-07 [1/s]

** RESRAD-BUILD Dose Program Output, Version 3.50 10/26/17 16:25:54 Page: 4 **

Title : Sample F51 0-6 inches

Input File : C:\RESRAD_Family\BUILD\3.5\UTHealth.bld

_____ Source Information _____

Source: 1

Location:: Room : 1 x: 0.00 y: 0.00 z: 0.00[m]

Geometry:: Type: Volume Area:3.60E+01 [m2] Direction: x

Pathway ::

Direct Ingestion Rate: 0.000E+00 [gm/hr]

Fraction released to air: 1.000E-01

Containment :: Number of Regions: 1 Contaminated Region: 1

Region : 1
Thickness [cm] :1.50E+01
Density [g/cm3] :2.40E+00
Material :Concrete
Erosion Rate [cm/day] :2.40E-08

Contamination::

Nuclide Concentration Dose Conversion Factor (Library: FGR 13 Morbidity)

		Ingestion	Inhalation	Submersion
	[pCi/g]	[mrem/pCi]	[mrem/pCi]	[mrem/yr/
				(pCi/m3)]
GD-152	0.000E+00	1.610E-04	2.430E-01	0.000E+00
EU-154	7.830E-01	9.550E-06	2.860E-04	7.172E-03
EU-152	1.630E+01	6.480E-06	2.210E-04	6.599E-03
CO-60	1.220E+00	2.690E-05	2.190E-04	1.472E-02

** RESRAD-BUILD Dose Program Output, Version 3.50 10/26/17 16:25:54 Page: 5 **
Title: Sample F51 0-6 inches

Input File : C:\RESRAD_Family\BUILD\3.5\UTHealth.bld

Evaluation Time: 0.0000000E+00 years

Assessment for Time: 1
Time =0.00E+00 yr

_____ Source Information _____

Source: 1

Pathway ::

Direct Ingestion Rate : 0.000E+00 [gm/hr]

Fraction released to air: 1.000E-01

Containment :: Number of Regions: 1 Contaminated Region: 1

Region : 1
Thickness [cm] :1.50E+01
Fraction Contaminated :1.00E+00
Density [g/cm3] :2.40E+00

** RESRAD-BUILD Dose Program Output, Version 3.50 10/26/17 16:25:54 Page: 6 **

Title : Sample F51 0-6 inches

Input File : C:\RESRAD_Family\BUILD\3.5\UTHealth.bld

Evaluation Time: 0.00000000E+00 years

RESRAD-BUILD Dose Tables

Source Contributions to Receptor Doses

[mrem]

Source Total

1

Receptor 1 4.19E+01 4.19E+01 Total 4.19E+01 4.19E+01 ** RESRAD-BUILD Dose Program Output, Version 3.50 10/26/17 16:25:54 Page: 7 **

Title : Sample F51 0-6 inches

Input File : C:\RESRAD_Family\BUILD\3.5\UTHealth.bld

Evaluation Time: 0.0000000E+00 years

Pathway Detail of Doses

[mrem]

Source: 1

Receptor	External	Deposition	Immersion	Inhalation	Radon	Ingestion
1	4.19E+01	6.64E-06	7.12E-08	1.47E-05	0.00E+00	1.37E-06
Total	4.19E+01	6.64E-06	7.12E-08	1.47E-05	0.00E+00	1.37E-06

** RESRAD-BUILD Dose Program Output, Version 3.50 10/26/17 16:25:54 Page: 8 **

Title : Sample F51 0-6 inches

Input File : C:\RESRAD_Family\BUILD\3.5\UTHealth.bld

Evaluation Time: 0.0000000E+00 years

Nuclide Detail of Doses

[mrem]

Source: 1

Nuclide	Receptor	Total
	1	
EU-154	1.78E+00	1.78E+00
GD-152	4.93E-17	4.93E-17
EU-152	3.45E+01	3.45E+01
CO-60	5.63E+00	5.63E+00

** RESRAD-BUILD Dose Program Output, Version 3.50 10/26/17 16:25:54 Page: 9 **

Title: Sample F51 0-6 inches

Input File: C:\RESRAD_Family\BUILD\3.5\UTHealth.bld

Evaluation Time: 1.00000000 years

Assessment for Time: 2 —

Time =1.00E+00 yr —

Source Information ——

Source: 1

Pathway ::

Direct Ingestion Rate : 0.000E+00 [gm/hr]

Fraction released to air: 1.000E-01

Containment :: Number of Regions: 1 Contaminated Region: 1

Region : 1
Thickness [cm] :1.50E+01
Fraction Contaminated :1.00E+00
Density [g/cm3] :2.40E+00

** RESRAD-BUILD Dose Program Output, Version 3.50 10/26/17 16:25:54 Page: 10 **

Title: Sample F51 0-6 inches

Input File: C:\RESRAD_Family\BUILD\3.5\UTHealth.bld

Evaluation Time: 1.00000000 years

RESRAD-BUILD Dose Tables

RESRAD-BUILD Dose Tables

Source Contributions to Receptor Doses

[mrem]

Source Total

1

Receptor 1 3.93E+01 3.93E+01 Total 3.93E+01 3.93E+01 ** RESRAD-BUILD Dose Program Output, Version 3.50 10/26/17 16:25:54 Page: 11 **

Title : Sample F51 0-6 inches

Input File : C:\RESRAD_Family\BUILD\3.5\UTHealth.bld

Evaluation Time: 1.00000000 years

Pathway Detail of Doses

[mrem]

Source: 1

Receptor	External	Deposition	Immersion	Inhalation	Radon	Ingestion
1	3.93E+01	6.24E-06	6.69E-08	1.39E-05	0.00E+00	1.27E-06
Total	3.93E+01	6.24E-06	6.69E-08	1.39E-05	0.00E+00	1.27E-06

** RESRAD-BUILD Dose Program Output, Version 3.50 10/26/17 16:25:54 Page: 12 **

Title : Sample F51 0-6 inches

Input File : C:\RESRAD_Family\BUILD\3.5\UTHealth.bld

Evaluation Time: 1.00000000 years

Nuclide Detail of Doses

[mrem]

Source: 1

Nuclide	Receptor	Total
	1	
EU-154	1.65E+00	1.65E+00
GD-152	1.45E-16	1.45E-16
EU-152	3.27E+01	3.27E+01
CO-60	4.94E+00	4.94E+00

** RESRAD-BUILD Dose Program Output, Version 3.50 10/26/17 16:25:54 Page: 13 **
Title: Sample F51 0-6 inches
Input File: C:\RESRAD_Family\BUILD\3.5\UTHealth.bld
Evaluation Time: 10.0000000 years

Assessment for Time: 3 —

Time =1.00E+01 yr —

Source: 1

Location:: Room: 1 x: 0.00 y: 0.00 z: 0.00 [m]

Geometry:: Type: Volume Area:3.60E+01 [m2] Direction: x
Pathway::

Direct Ingestion Rate: 0.000E+00 [gm/hr]

Fraction released to air: 1.000E-01

Containment :: Number of Regions: 1 Contaminated Region: 1

Region : 1
Thickness [cm] :1.50E+01
Fraction Contaminated :1.00E+00
Density [g/cm3] :2.40E+00

** RESRAD-BUILD Dose Program Output, Version 3.50 10/26/17 16:25:54 Page: 14 **

Title: Sample F51 0-6 inches

Input File: C:\RESRAD_Family\BUILD\3.5\UTHealth.bld

Evaluation Time: 10.0000000 years

RESRAD-BUILD Dose Tables

Source Contributions to Receptor Doses

[mrem]

Source Total

1

Receptor 1 2.28E+01 2.28E+01 Total 2.28E+01 2.28E+01 ** RESRAD-BUILD Dose Program Output, Version 3.50 10/26/17 16:25:54 Page: 15 **

Title : Sample F51 0-6 inches

Input File : C:\RESRAD_Family\BUILD\3.5\UTHealth.bld

Evaluation Time: 10.0000000 years

Pathway Detail of Doses

[mrem]

Receptor	External	Deposition	Immersion	Inhalation	Radon	Ingestion
1	2.28E+01	3.66E-06	3.90E-08	8.34E-06	0.00E+00	7.11E-07
Total	2.28E+01	3.66E-06	3.90E-08	8.34E-06	0.00E+00	7.11E-07

** RESRAD-BUILD Dose Program Output, Version 3.50 10/26/17 16:25:54 Page: 16 **

Title : Sample F51 0-6 inches

Input File : C:\RESRAD_Family\BUILD\3.5\UTHealth.bld

Evaluation Time: 10.0000000 years

Nuclide Detail of Doses

[mrem]

Nuclide	Receptor	Total
	1	
EU-154	8.12E-01	8.12E-01
GD-152	8.12E-16	8.12E-16
EU-152	2.05E+01	2.05E+01
CO-60	1.51E+00	1.51E+00

Containment :: Number of Regions: 1 Contaminated Region: 1

Region : 1
Thickness [cm] :1.50E+01
Fraction Contaminated :1.00E+00
Density [g/cm3] :2.40E+00

** RESRAD-BUILD Dose Program Output, Version 3.50 10/26/17 16:25:54 Page: 18 **

Title: Sample F51 0-6 inches

Input File: C:\RESRAD_Family\BUILD\3.5\UTHealth.bld

Evaluation Time: 100.000008 years

RESRAD-BUILD Dose Tables

RESRAD-BUILD Dose Tables

Source Contributions to Receptor Doses

[mrem]

Source Total

1

Receptor 1 1.89E-01 1.89E-01 Total 1.89E-01 1.89E-01 ** RESRAD-BUILD Dose Program Output, Version 3.50 10/26/17 16:25:54 Page: 19 **

Title : Sample F51 0-6 inches

Input File : C:\RESRAD_Family\BUILD\3.5\UTHealth.bld

Evaluation Time: 100.000008 years

Pathway Detail of Doses

[mrem]

Receptor	External	Deposition	Immersion	Inhalation	Radon	Ingestion
1	1.89E-01	3.06E-08	3.25E-10	7.15E-08	0.00E+00	5.58E-09
Total	1.89E-01	3.06E-08	3.25E-10	7.15E-08	0.00E+00	5.58E-09

** RESRAD-BUILD Dose Program Output, Version 3.50 10/26/17 16:25:54 Page: 20 **

Title : Sample F51 0-6 inches

Input File : C:\RESRAD_Family\BUILD\3.5\UTHealth.bld

Evaluation Time: 100.000008 years

Nuclide Detail of Doses

[mrem]

Nuclide	Receptor	Total
	1	
EU-154	6.77E-04	6.77E-04
GD-152	1.92E-15	1.92E-15
EU-152	1.88E-01	1.88E-01
CO-60	1.09E-05	1.09E-05

Containment :: Number of Regions: 1 Contaminated Region: 1

Region : 1
Thickness [cm] :1.50E+01
Fraction Contaminated :1.00E+00
Density [g/cm3] :2.40E+00

** RESRAD-BUILD Dose Program Output, Version 3.50 10/26/17 16:25:54 Page: 22 **

Title: Sample F51 0-6 inches

Input File: C:\RESRAD_Family\BUILD\3.5\UTHealth.bld

Evaluation Time: 1000.00000 years

RESRAD-BUILD Dose Tables

RESRAD-BUILD Dose Tables

Source Contributions to Receptor Doses

[mrem]

Source Total

1

Receptor 1 1.93E-15 1.93E-15 Total 1.93E-15 1.93E-15 ** RESRAD-BUILD Dose Program Output, Version 3.50 10/26/17 16:25:54 Page: 23 **

Title : Sample F51 0-6 inches

Input File : C:\RESRAD_Family\BUILD\3.5\UTHealth.bld

Evaluation Time: 1000.00000 years

Pathway Detail of Doses

[mrem]

Receptor	External	Deposition	Immersion	Inhalation	Radon	Ingestion
1	8.01E-22	1.30E-28	1.38E-30	1.92E-15	0.00E+00	3.40E-18
Total	8 N1F-22	1 30F-28	1 385-30	1 925-15	0 005+00	3 40F-18

** RESRAD-BUILD Dose Program Output, Version 3.50 10/26/17 16:25:54 Page: 24 **

Title : Sample F51 0-6 inches

Input File : C:\RESRAD_Family\BUILD\3.5\UTHealth.bld

Evaluation Time: 1000.00000 years

Nuclide Detail of Doses

[mrem]

Source: 1

	_	
	1	
EU-154	0.00E+00	0.00E+00
GD-152	1.93E-15	1.93E-15
EU-152	8.01E-22	8.01E-22

Nuclide Receptor Total

Input File : C:\RESRAD_Family\BUILD\3.5\UTHealth.bld Full Summary RESRAD-BUILD Dose (Time) Tables Receptor Dose Received for the Exposure Duration (mrem) Evaluation Time [yr] 0.00E+00 1.00E+00 1.00E+01 1.00E+02 1.00E+03 4.19E+01 3.93E+01 2.28E+01 1.89E-01 1.93E-15 Receptor Dose/Yr Averaged Over Exposure Duration (mrem/yr) Evaluation Time [yr] 0.00E+00 1.00E+00 1.00E+01 1.00E+02 1.00E+03 4.19E+01 3.93E+01 2.28E+01 1.89E-01 1.93E-15

** RESRAD-BUILD Dose Program Output, Version 3.50 10/26/17 16:25:54 Page: 25 **

Title : Sample F51 0-6 inches

Title : Sample F18 0-6 inches

Input File : C:\RESRAD_Family\BUILD\3.5\UTHealth.bld

RESRAD-BUILD Table of Contents

RESRAD-BUILD Input Parameters	2
Building Information	3
Source Information	4
For time = $0.00E+00 \text{ yr}$	
Time Specific Parameters	5
Receptor-Source Dose Summary	6
Dose by Pathway Detail	7
Dose by Nuclide Detail	8
For time = 1.00E+00 yr	
Time Specific Parameters	9
Receptor-Source Dose Summary	10
Dose by Pathway Detail	11
Dose by Nuclide Detail	12
For time = 1.00E+01 yr	
Time Specific Parameters	13
Receptor-Source Dose Summary	14
Dose by Pathway Detail	15
Dose by Nuclide Detail	16
For time = 1.00E+02 yr	
Time Specific Parameters	17
Receptor-Source Dose Summary	18
Dose by Pathway Detail	19
Dose by Nuclide Detail	20
For time = 1.00E+03 yr	
Time Specific Parameters	21
Receptor-Source Dose Summary	22
Dose by Pathway Detail	23
Dose by Nuclide Detail	24
Full Summary	25

** RESRAD-BUILD Dose Program Output, Version 3.50 10/26/17 16:23:56 Page: 2 ** Title : Sample F18 0-6 inches Input File : C:\RESRAD_Family\BUILD\3.5\UTHealth.bld RESRAD-BUILD Input Parameters Number of Sources : 1 Number of Receptors: 1 Total Time : 3.650000E+02 days Fraction Inside : 5.000000E-01 Receptor Information z FracTime Inhalation Ingestion(Dust) Receptor Room X У [m] [m3/day] [m2/hr] [m] [m] 1.000 1.000 1.000 1.000 1.80E+01 1.00E-04 == Receptor-Source Shielding Relationship === Receptor Source Density Thickness Material

[g/cm3] [cm]

1 1 2.40E+00 0.00E+00 Concrete

** RESRAD-BUILD Dose Program Output, Version 3.50 10/26/17 16:23:56 Page: 3 **

Title : Sample F18 0-6 inches

Input File : C:\RESRAD_Family\BUILD\3.5\UTHealth.bld

----- Building Information -----

Building Air Exchange Rate: 8.00E-01 1/hr

Deposition velocity: 1.00E-02 [m/s] Resuspension Rate: 5.00E-07 [1/s]

** RESRAD-BUILD Dose Program Output, Version 3.50 10/26/17 16:23:56 Page: 4 **

Title : Sample F18 0-6 inches

Input File : C:\RESRAD_Family\BUILD\3.5\UTHealth.bld

_____ Source Information _____

Source: 1

Location:: Room : 1 x: 0.00 y: 0.00 z: 0.00[m]

Geometry:: Type: Volume Area:3.60E+01 [m2] Direction: x

Pathway ::

Direct Ingestion Rate: 0.000E+00 [gm/hr]

Fraction released to air: 1.000E-01

Containment :: Number of Regions: 1 Contaminated Region: 1

Region : 1
Thickness [cm] :1.50E+01
Density [g/cm3] :2.40E+00
Material :Concrete
Erosion Rate [cm/day] :2.40E-08

Contamination::

Nuclide Concentration Dose Conversion Factor (Library: FGR 13 Morbidity)

		Ingestion	Inhalation	Submersion
	[pCi/g]	[mrem/pCi]	[mrem/pCi]	[mrem/yr/
				(pCi/m3)]
GD-152	0.000E+00	1.610E-04	2.430E-01	0.000E+00
EU-154	5.230E-01	9.550E-06	2.860E-04	7.172E-03
EU-152	8.490E+00	6.480E-06	2.210E-04	6.599E-03
CO-60	5.470E-01	2.690E-05	2.190E-04	1.472E-02

** RESRAD-BUILD Dose Program Output, Version 3.50 10/26/17 16:23:56 Page: 5 **

Title: Sample F18 0-6 inches

Input File: C:\RESRAD_Family\BUILD\3.5\UTHealth.bld

Evaluation Time: 0.00000000E+00 years

Assessment for Time: 1 == Time =0.00E+00 yr ==

_____ Source Information _____

Source: 1

Pathway ::

Direct Ingestion Rate : 0.000E+00 [gm/hr]

Fraction released to air: 1.000E-01

Containment :: Number of Regions: 1 Contaminated Region: 1

Region : 1
Thickness [cm] :1.50E+01
Fraction Contaminated :1.00E+00
Density [g/cm3] :2.40E+00

** RESRAD-BUILD Dose Program Output, Version 3.50 10/26/17 16:23:56 Page: 6 **

Title: Sample F18 0-6 inches
Input File: C:\RESRAD_Family\BUILD\3.5\UTHealth.bld

Evaluation Time: 0.00000000E+00 years

RESRAD-BUILD Dose Tables

Source Contributions to Receptor Doses

[mrem]

Source Total

1

Receptor 1 2.17E+01 2.17E+01 Total 2.17E+01 2.17E+01

** RESRAD-BUILD Dose Program Output, Version 3.50 10/26/17 16:23:56 Page: 7 **

Title : Sample F18 0-6 inches

Input File : C:\RESRAD_Family\BUILD\3.5\UTHealth.bld

Evaluation Time: 0.0000000E+00 years

Pathway Detail of Doses

[mrem]

Receptor	External	Deposition	Immersion	Inhalation	Radon	Ingestion
1	2.17E+01	3.45E-06	3.69E-08	7.71E-06	0.00E+00	7.01E-07
Total	2.17E+01	3.45E-06	3.69E-08	7.71E-06	0.00E+00	7.01E-07

** RESRAD-BUILD Dose Program Output, Version 3.50 10/26/17 16:23:56 Page: 8 **

Title : Sample F18 0-6 inches

Input File : C:\RESRAD_Family\BUILD\3.5\UTHealth.bld

Evaluation Time: 0.0000000E+00 years

Nuclide Detail of Doses

[mrem]

Nuclide	Receptor	Total
	1	
EU-154	1.19E+00	1.19E+00
GD-152	2.57E-17	2.57E-17
EU-152	1.80E+01	1.80E+01
CO-60	2.52E+00	2.52E+00

** RESRAD-BUILD Dose Program Output, Version 3.50 10/26/17 16:23:56 Page: 9 **

Title: Sample F18 0-6 inches

Input File: C:\RESRAD_Family\BUILD\3.5\UTHealth.bld

Evaluation Time: 1.00000000 years

Assessment for Time: 2 ______

Time =1.00E+00 yr _____

Source Information _____

Source: 1

Pathway ::

Direct Ingestion Rate : 0.000E+00 [gm/hr]

Fraction released to air: 1.000E-01

Containment :: Number of Regions: 1 Contaminated Region: 1

Region : 1
Thickness [cm] :1.50E+01
Fraction Contaminated :1.00E+00
Density [g/cm3] :2.40E+00

** RESRAD-BUILD Dose Program Output, Version 3.50 10/26/17 16:23:56 Page: 10 **

Title: Sample F18 0-6 inches

Input File: C:\RESRAD_Family\BUILD\3.5\UTHealth.bld

Evaluation Time: 1.00000000 years

RESRAD-BUILD Dose Tables

Source Contributions to Receptor Doses

[mrem]

Source Total

1

Receptor 1 2.04E+01 2.04E+01 Total 2.04E+01 2.04E+01 ** RESRAD-BUILD Dose Program Output, Version 3.50 10/26/17 16:23:56 Page: 11 **

Title : Sample F18 0-6 inches

Input File : C:\RESRAD_Family\BUILD\3.5\UTHealth.bld

Evaluation Time: 1.00000000 years

Pathway Detail of Doses

[mrem]

Receptor	External	Deposition	Immersion	Inhalation	Radon	Ingestion
1	2.04E+01	3.24E-06	3.47E-08	7.28E-06	0.00E+00	6.56E-07
Total	2.04E+01	3.24E-06	3.47E-08	7.28E-06	0.00E+00	6.56E-07

** RESRAD-BUILD Dose Program Output, Version 3.50 10/26/17 16:23:56 Page: 12 **

Title : Sample F18 0-6 inches

Input File : C:\RESRAD_Family\BUILD\3.5\UTHealth.bld

Evaluation Time: 1.00000000 years

Nuclide Detail of Doses

[mrem]

Nuclide	Receptor	Total
	1	
EU-154	1.10E+00	1.10E+00
GD-152	7.53E-17	7.53E-17
EU-152	1.71E+01	1.71E+01
CO-60	2.21E+00	2.21E+00

containment .. Number of Regions. I contaminated Region.

Region : 1
Thickness [cm] :1.50E+01
Fraction Contaminated :1.00E+00
Density [g/cm3] :2.40E+00

** RESRAD-BUILD Dose Program Output, Version 3.50 10/26/17 16:23:56 Page: 14 **

Title: Sample F18 0-6 inches
Input File: C:\RESRAD_Family\BUILD\3.5\UTHealth.bld

Evaluation Time: 10.0000000 years

RESRAD-BUILD Dose Tables

Source Contributions to Receptor Doses

[mrem]

Source Total

1

Receptor 1 1.19E+01 1.19E+01 Total 1.19E+01 1.19E+01 ** RESRAD-BUILD Dose Program Output, Version 3.50 10/26/17 16:23:56 Page: 15 **

Title : Sample F18 0-6 inches

Input File : C:\RESRAD_Family\BUILD\3.5\UTHealth.bld

Evaluation Time: 10.0000000 years

Pathway Detail of Doses

[mrem]

Receptor	External	Deposition	Immersion	Inhalation	Radon	Ingestion
1	1.19E+01	1.91E-06	2.03E-08	4.38E-06	0.00E+00	3.69E-07
Total	1.19E+01	1.91E-06	2.03E-08	4.38E-06	0.00E+00	3.69E-07

** RESRAD-BUILD Dose Program Output, Version 3.50 10/26/17 16:23:56 Page: 16 **

Title : Sample F18 0-6 inches

Input File : C:\RESRAD_Family\BUILD\3.5\UTHealth.bld

Evaluation Time: 10.0000000 years

Nuclide Detail of Doses

[mrem]

Nuclide	Receptor	Total	
	1		
EU-154	5.42E-01	5.42E-01	
GD-152	4.23E-16	4.23E-16	
EU-152	1.07E+01	1.07E+01	
CO-60	6.78E-01	6.78E-01	

** RESRAD-BUILD Dose Program Output, Version 3.50 10/26/17 16:23:56 Page: 17 ** Title : Sample F18 0-6 inches Input File : C:\RESRAD_Family\BUILD\3.5\UTHealth.bld Evaluation Time: 100.000008 years Assessment for Time: 4 Time =1.00E+02 yr _____ Source Information ____ Source: 1 Location:: Room : 1 x: 0.00 y: 0.00 z: 0.00 [m] Geometry:: Type: Volume Area:3.60E+01 [m2] Direction: x Pathway :: Direct Ingestion Rate : 0.000E+00 [gm/hr] Fraction released to air: 1.000E-01 Containment :: Number of Regions: 1 Contaminated Region: 1 : 1 Region

:2.40E+00

Contamination:: Nuclide Concentration

:1.50E+01

Thickness [cm]

Density [g/cm3]

Fraction Contaminated :1.00E+00

[pCi/g] GD-152 1.040E-12 1.985E-04 EU-154 EU-152 4.629E-02 CO-60 1.061E-06 ** RESRAD-BUILD Dose Program Output, Version 3.50 10/26/17 16:23:56 Page: 18 **

Title: Sample F18 0-6 inches

Input File: C:\RESRAD_Family\BUILD\3.5\UTHealth.bld

Evaluation Time: 100.000008 years

RESRAD-BUILD Dose Tables

RESRAD-BUILD Dose Tables

Source Contributions to Receptor Doses

[mrem]

Source Total

1

Receptor 1 9.84E-02 9.84E-02 Total 9.84E-02 9.84E-02 ** RESRAD-BUILD Dose Program Output, Version 3.50 10/26/17 16:23:56 Page: 19 **

Title : Sample F18 0-6 inches

Input File : C:\RESRAD_Family\BUILD\3.5\UTHealth.bld

Evaluation Time: 100.000008 years

Pathway Detail of Doses

[mrem]

u	rce: 1						
	Receptor	External	Deposition	Immersion	Inhalation	Radon	Ingestion
	1	9.84E-02	1.60E-08	1.70E-10	3.73E-08	0.00E+00	2.91E-09
	Total	9.84E-02	1.60E-08	1.70E-10	3.73E-08	0.00E+00	2.91E-09

** RESRAD-BUILD Dose Program Output, Version 3.50 10/26/17 16:23:56 Page: 20 **

Title : Sample F18 0-6 inches

Input File : C:\RESRAD_Family\BUILD\3.5\UTHealth.bld

Evaluation Time: 100.000008 years

Nuclide Detail of Doses

[mrem]

Nuclide	Receptor	Total	
	1		
EU-154	4.52E-04	4.52E-04	
GD-152	9.98E-16	9.98E-16	
EU-152	9.79E-02	9.79E-02	
CO-60	4.90E-06	4.90E-06	

Containment :: Number of Regions: 1 Contaminated Region: 1

Region : 1
Thickness [cm] :1.50E+01
Fraction Contaminated :1.00E+00
Density [g/cm3] :2.40E+00

** RESRAD-BUILD Dose Program Output, Version 3.50 10/26/17 16:23:56 Page: 22 **

Title: Sample F18 0-6 inches

Input File: C:\RESRAD_Family\BUILD\3.5\UTHealth.bld

Evaluation Time: 1000.00000 years

RESRAD-BUILD Dose Tables

Source Contributions to Receptor Doses

[mrem]

Source Total

1

Receptor 1 1.00E-15 1.00E-15 Total 1.00E-15 1.00E-15 ** RESRAD-BUILD Dose Program Output, Version 3.50 10/26/17 16:23:56 Page: 23 **

Title : Sample F18 0-6 inches

Input File : C:\RESRAD_Family\BUILD\3.5\UTHealth.bld

Evaluation Time: 1000.00000 years

Pathway Detail of Doses

[mrem]

Receptor	External	Deposition	Immersion	Inhalation	Radon	Ingestion
1	4.17E-22	6.78E-29	7.19E-31	1.00E-15	0.00E+00	1.77E-18
Total	4.17E-22	6.78E-29	7.19E-31	1.00E-15	0.00E+00	1.77E-18

** RESRAD-BUILD Dose Program Output, Version 3.50 10/26/17 16:23:56 Page: 24 **

Title : Sample F18 0-6 inches

Input File : C:\RESRAD_Family\BUILD\3.5\UTHealth.bld

Evaluation Time: 1000.00000 years

Nuclide Detail of Doses

[mrem]

Nuclide	Receptor	Total	
	1		
EU-154	0.00E+00	0.00E+00	
GD-152	1.00E-15	1.00E-15	
EU-152	4.17E-22	4.17E-22	

Input File : C:\RESRAD_Family\BUILD\3.5\UTHealth.bld Full Summary RESRAD-BUILD Dose (Time) Tables Receptor Dose Received for the Exposure Duration (mrem) Evaluation Time [yr] 0.00E+00 1.00E+00 1.00E+01 1.00E+02 1.00E+03 2.17E+01 2.04E+01 1.19E+01 9.84E-02 1.00E-15 Receptor Dose/Yr Averaged Over Exposure Duration (mrem/yr) Evaluation Time [yr] 0.00E+00 1.00E+00 1.00E+01 1.00E+02 1.00E+03 2.17E+01 2.04E+01 1.19E+01 9.85E-02 1.00E-15

** RESRAD-BUILD Dose Program Output, Version 3.50 10/26/17 16:23:56 Page: 25 **

Title : Sample F18 0-6 inches

ATTACHMENT 4

Liquid Scintillation Counting Results

Protocol# 10 - Wipe Test.lsa

vault floor

-Assay Definition

Assay Description:

Wipe Test

Assay Type: CPM Report Name: Report1

Output Data Path: C:\Packard\Tricarb\Results\Sai Yan\Wipe Test\20170912 1701

Raw Results Path: C:\Packard\Tricarb\Results\Sai Yan\Wipe Test\20170912 1701\20170912

1701.results

Comma-Delimited File Name: C:\Packard\Tricarb\Results\Sai Yan\Wipe Test\20170912 1701

\Report1.csv

Assay File Name: C:\Packard\TriCarb\Assays\Wipe Test.lsa

Count Conditions

Nuclide: Fun Wipes

Quench Indicator: SIS

External Std Terminator (sec): n/a

Pre-Count Delay (min): 0.00

Quench Set: n/a

Count Time (min): 1.00

Count Mode: Normal

Assay Count Cycles: 1
Number of Vials/Sample: 1

Repeat Sample Count: 1

Calculate % Reference: Off

Background = $\frac{23}{\text{cpm}}$

MDA = 4/dpm

with H-3 efficiency = 62%

Background Subtract

Background Subtract: Off Low CPM Threshold: Off

2 Sigma % Terminator: Off

Regions LL UL A 0.0 18.6 B 18.6 156.0

C 0.0 2000.0

tion Level = 48 com

All wipes are < MDA

unless otherwise marked.

Count Corrections

Static Controller: On Luminescence Correction: Off GCT: n/a Colored Samples: n/a Heterogeneity Monitor: n/a PAC: n/a

Coincidence Time (nsec): 18 Delay Before Burst (nsec): 75 PAC Strength: n/a

Instrument Block Data

MODEL=Tri-Carb 4910TR SERIAL=SGLO34150058

P#	S#	Count Time	CPMA	CPMB	CPMC_	SIS	DATE	TIME
10	1	1.00	15	11	26	58.21	9/12/2017	5:02:19 PM
10	2	1.00	13	9	22	50.10	9/12/2017	5:03:37 PM
10	3	1.00	26	6	33	53.57	9/12/2017	5:04:54 PM
10	4	1.00	19	7	27	102.29	9/12/2017	5:06:12 PM
10	5	1.00	17	4	21	39.40	9/12/2017	5:07:30 PM
	6	1.00	17	6	23	53.28	9/12/2017	5:08:48 PM
10	7	1.00	14	12	26	63.40	9/12/2017	5:10:06 PM
	10 10 10 10 10 10	10 1 10 2 10 3 10 4 10 5 10 6	10 1 1.00 10 2 1.00 10 3 1.00 10 4 1.00 10 5 1.00 10 6 1.00	10 1 1.00 15 10 2 1.00 13 10 3 1.00 26 10 4 1.00 19 10 5 1.00 17 10 6 1.00 17	10 1 1.00 15 11 10 2 1.00 13 9 10 3 1.00 26 6 10 4 1.00 19 7 10 5 1.00 17 4 10 6 1.00 17 6	10 1 1.00 15 11 26 10 2 1.00 13 9 22 10 3 1.00 26 6 33 10 4 1.00 19 7 27 10 5 1.00 17 4 21 10 6 1.00 17 6 23	10 1 1.00 15 11 26 58.21 10 2 1.00 13 9 22 50.10 10 3 1.00 26 6 33 53.57 10 4 1.00 19 7 27 102.29 10 5 1.00 17 4 21 39.40 10 6 1.00 17 6 23 53.28	10 1 1.00 15 11 26 58.21 9/12/2017 10 2 1.00 13 9 22 50.10 9/12/2017 10 3 1.00 26 6 33 53.57 9/12/2017 10 4 1.00 19 7 27 102.29 9/12/2017 10 5 1.00 17 4 21 39.40 9/12/2017 10 6 1.00 17 6 23 53.28 9/12/2017

User: Sai Yan

Protocol# 10 - Wipe Test.lsa

vault floor

1.00 16 6 23 82.73 10 10 9/12/2017 5:11:23 PM 10 1.00 74.69 10 9 13 13 26 9/12/2017 5:12:42 PM 10 10 10 1.00 21 5 27 78.85 9/12/2017 5:13:59 PM 10 10 11 1.00 15 6 22 94.18 9/12/2017 5:15:17 PM 10 10 12 1.00 20 9 29 50.32 9/12/2017 5:16:35 PM 24 19 12 37 6 26 10 13 1.00 77.26 9/12/2017 5:17:59 PM 26 5:19:17 PM 10 14 1.00 68.15 9/12/2017 17 5 25 144.16 9/12/2017 21 13 34 87.18 9/12/2017 19 12 31 95.86 9/12/2017 16 8 24 61.02 9/12/2017 19 13 34 135.22 9/12/2017 11 7 19 91.48 9/12/2017 14 8 22 55.37 9/12/2017 18 12 31 102.95 9/12/2017 10 13 24 138.70 9/12/2017 10 13 24 138.70 9/12/2017 11 4 17 117.87 9/12/2017 11 4 17 117.87 9/12/2017 12 2 2 2 4 32.03 9/12/2017 13 10 24 98.93 9/12/2017 10 4 14 66.85 9/12/2017 13 8 21 74.79 9/12/2017 2 10 15 1.00 5:20:35 PM 2 10 16 1.00 5:21:53 PM 2 10 17 1.00 5:23:10 PM 2 10 18 1.00 5:24:28 PM 2 10 19 1.00 5:25:46 PM 2 10 20 1.00 5:27:04 PM 2 1.00 10 21 5:28:22 PM 2 10 22 1.00 5:29:40 PM 2 10 23 1.00 5:30:57 PM 2 10 24 1.00 5:32:16 PM 9 5:33:39 PM 10 25 1.00 9 10 26 1.00 5:34:57 PM 9 10 27 1.00 5:36:15 PM 9 10 28 1.00 5:37:33 PM 9 10 29 1.00 5:38:51 PM 8 21 74.79 9/12/2017 10 28 79.80 9/12/2017 8 21 79.45 9/12/2017 9 13 10 30 1.00 5:40:09 PM 13 18 13 19.80 9/12/2017

8 21 79.45 9/12/2017

19 11 31 98.87 9/12/2017

16 8 25 109.47 9/12/2017

15 7 22 60.77 9/12/2017

18 7 26 89.14 9/12/2017

16 11 27 110.14 9/12/2017

9 11 21 114.38 9/12/2017

13 8 21 50 25 9 10 31 1.00 5:41:27 PM 9 10 32 1.00 5:42:45 PM 19 16 9 10 33 1.00 5:44:03 PM 9 10 34 1.00 5:45:21 PM 1.00 9 10 35 15 5:46:39 PM 1.00 9 18 5:47:57 PM 10 36 37 5:49:21 PM 21 10 1.00 11 8 21 7 18 58.40 5,... 7 30 92.29 9/12/2017 7 22 124.16 9/12/2017 3 17 98.42 9/12/2017 9 25 105.13 9/12/2017 21 10 38 1.00 5:50:39 PM 13 11 21 5:51:57 PM 10 39 1.00 5:53:15 PM 21 10 40 1.00 21 5:54:33 PM 21 10 41 1.00 14 5:55:51 PM 21 10 42 1.00 21 10 43 1.00 13 5:57:09 PM 5:58:26 PM 21 10 44 1.00 14 Missing vial 45. (Area not accessible) Missing vial 46. (Area not accessible) 47 1.00 15 5:59:47 PM 21 10 48 1.00 19 3 23 84.40 9/12/2017 6:01:05 PM 21 10 17 15 10 7 22 10 49 1.00 27 66.90 9/12/2017 6:02:29 PM 10 23 98.85 9/12/2017 6:03:48 PM 22 50 1.00 6:05:06 PM 22 10 51 1.00 1.00 6:06:24 PM 22 10 52 1.00 6:07:42 PM 22 10 53 1.00 22 10 54 6:09:00 PM 1.00 6:10:18 PM 22 10 55 6:11:36 PM 22 10 56 1.00 57 6:12:53 PM 22 10 1.00 7 13 13 10 10 6:14:11 PM 22 10 58 1.00 22 10 59 1.00 6:15:29 PM 10 26 92.47 9/12/2017 10 21 103.98 9/12/2017 9 24 76.71 9/12/2017 11 28 67.80 9/12/2017 12 27 68.87 9/12/2017 10 25 96.30 9/12/2017 5 19 101.92 9/12/2017 22 10 60 1.00 6:16:47 PM 10 6:18:12 PM 23 10 61 1.00 1.00 15 6:19:29 PM 23 10 62 6:20:47 PM 23 10 1.00 17 63 23 10 1.00 15 6:22:05 PM 64 15 6:23:23 PM 23 10 65 1.00 6:24:41 PM 1.00 12 23 10 66 missing vial 67. (Area not accessible) Missing vial 68. (Area not accessible) 69 1.00 25 16 41 50.36 9/12/2017 6:26:01 PM 23 10 19 15 34 9/12/2017 6:27:19 PM 23 10 70 1.00 73.76

Protocol# 10 - Wipe Test.lsa

vault floor

, 23	10	71	1.00	15	7	22	47.67	9/12/2017	6:28:37 PM
\sim 23	10	72	1.00	29	8	39	87.47	9/12/2017	6:29:55 PM
65	10	73	1.00	18	13	32	108.70	9/12/2017	6:31:20 PM
65	10	74	1.00	14	5	20	119.01	9/12/2017	6:32:38 PM
65	10	75	1.00	9	9	20	146.60	9/12/2017	6:33:56 PM
65	10	76	1.00	18	8	26	75.68	9/12/2017	6:35:14 PM
65	10	77	1.00	15	6	22	99.19	9/12/2017	6:36:32 PM
65	10	78	1.00	18	11	30	84.65	9/12/2017	6:37:49 PM
65	10	79	1.00	11	11	23	112.94	9/12/2017	6:39:07 PM
65	10	80	1.00	19	9	28	64.89	9/12/2017	6:40:25 PM
65	10	81	1.00	19	8	27	52.52	9/12/2017	6:41:43 PM
65	10	82	1.00	15	9	25	79.45	9/12/2017	6:43:01 PM
65	10	83	1.00	24	13	38	85.61	9/12/2017	6:44:19 PM
65	10	84	1.00	10	13	23	107.92	9/12/2017	6:45:36 PM
3	10	85	1.00	18	11	30	85.59	9/12/2017	6:47:01 PM
3	10	86	1.00	12	14	28	128.31	9/12/2017	6:48:19 PM
3	10	87	1.00	16	10	27	88.13	9/12/2017	6:49:37 PM
3	10	88	1.00	15	9	27	159.28	9/12/2017	6:50:55 PM
3	10	89	1.00	19	7	28	89.19	9/12/2017	6:52:12 PM
3	10	90	1.00	17	10	28	95.74	9/12/2017	6:53:30 PM
3	10	91	1.00	10	13	23	98.78	9/12/2017	6:54:48 PM
3	10	92	1.00	16	11	28	96.18	9/12/2017	6:56:06 PM
3	10	93	1.00	13	8	21	55.07	9/12/2017	6:57:24 PM
3	10	94	1.00	22	7	29	68.27	9/12/2017	6:58:42 PM
3	10	95	1.00	18	14	34	122.64	9/12/2017	7:00:00 PM
3	10	96	1.00	27	9	36	34.00	9/12/2017	7:01:18 PM
26	10	97	1.00	17	6	24	98.43	9/12/2017	7:02:42 PM
26	10	98	1.00	16	6	22	67.07	9/12/2017	7:04:00 PM
26	10	99	1.00	14	16	33	138.78	9/12/2017	7:05:18 PM
, 26	10	100	1.00	17	8	26	108.79	9/12/2017	7:06:36 PM
26	10	101(F1D		13	8	22	101.04	9/12/2017	7:07:54 PM
26	10	102 (F18)		19	2	21	25.18	9/12/2017	7:09:12 PM
26	10	103(F25)		12	7	21	166.35	9/12/2017	7:10:30 PM
26	10	104(F41)	D) 1.00	27	5	32	57.44	9/12/2017	7:11:48 PM
26	10	105 (F49)	D) 1.00	12	2 9	14	45.51	9/12/2017	7:13:05 PM
26	10	106(F54)		25	9	36	72.83	9/12/2017	7:14:23 PM
26	10	107(F70I) 1.00	8	7	15	85.98	9/12/2017	7:15:41 PM
26	10	108 (F78I		14	9	26	150.75	9/12/2017	7:16:59 PM
127	10	109 (F881		22	13	35	62.66	9/12/2017	7:18:42 PM
127	10	110(F97I	D) 1.00	24	9	34	88.45	9/12/2017	7:20:00 PM
, Miss		vial 111.							
BU 6127	10	112	1.00	16	5	23	113.66	9/12/2017	7:21:20 PM

Protocol# 6 - Wipe Test.lsa

User: Sai Yan

Page 1

vault ceiling

Assay Definition

Assay Description:

Wipe Test

Assay Type: CPM Report Name: Report1

Output Data Path: C:\Packard\Tricarb\Results\Sai Yan\Wipe Test\20170913_0859

Raw Results Path: C:\Packard\Tricarb\Results\Sai Yan\Wipe Test\20170913_0859\20170913_

0859.results

Comma-Delimited File Name: C:\Packard\Tricarb\Results\Sai Yan\Wipe Test\20170913_0859

\Report1.csv

Assay File Name: C:\Packard\TriCarb\Assays\Wipe Test.lsa

Count Conditions

Nuclide: Fun Wipes

Quench Indicator: SIS

External Std Terminator (sec): n/a

Pre-Count Delay (min): 0.00

Quench Set: n/a

Count Time (min): 1.00 Count Mode: Normal

Assay Count Cycles: 1 Repeat Sample Count: 1 Number of Vials/Sample: 1 Calculate % Reference: Off

Background Subtract

Background Subtract: Off Low CPM Threshold: Off 2 Sigma % Terminator: Off

Regions	$_{ m LL}$	UL
A	0.0	18.6
В	18.6	156.0
C	0.0	2000.0

Count Corrections

Luminescence Correction: Off Static Controller: On GCT: n/a Colored Samples: n/a Heterogeneity Monitor: n/a PAC: n/a

Coincidence Time (nsec): 18 Delay Before Burst (nsec): 75 PAC Strength: n/a

Instrument Block Data

MODEL=Tri-Carb 4910TR SERIAL=SGLO34150058

PID	P#	s#	Count Time	CPMA	CPMB	CPMC	SIS	DATE	TIME
2	6	1	1.00	31	6	37	34.04	9/13/2017	9:01:13 AM
2	6	2	1.00	23	10	33	66.85	9/13/2017	9:02:31 AM
2	6	3	1.00	11	3	16	147.20	9/13/2017	9:03:49 AM
2	6	4	1.00	18	5	23	49.18	9/13/2017	9:05:07 AM
2	6	5	1.00	11	9	22	124.39	9/13/2017	9:06:25 AM

Protocol# 6 - Wipe Test.lsa

vault ceiling

0	_		1 00	0.0	4	0.5	T0 20	0 /12 /001 🗆	0.07.40	7.16
2	6	6	1.00	20	4	25	79.38	9/13/2017	9:07:42	
2	6	7	1.00	24	6	30	33.38	9/13/2017	9:09:01	
2	6	8	1.00	16	9	25	70.65	9/13/2017	9:10:19	
2	6	9	1.00	11	13	24	79.59	9/13/2017	9:11:36	
2	6	10	1.00	25	8	33	61.49	9/13/2017	9:12:55	AM
2	6	11	1.00	15	5	21	65.16	9/13/2017		
2	6	12	1.00	17	6	23	59.35	9/13/2017	9:15:30	AM
14	6	13	1.00	11	9	20	70.41	9/13/2017	9:16:55	AM
14	6	14	1.00	18	13	31	71.47	9/13/2017	9:18:13	AM
14	6	15	1.00	16	3	19	31.47	9/13/2017	9:19:31	
14	6	16	1.00	16	6	23	90.24	9/13/2017	9:20:49	
14	6	17	1.00	15	13	28	94.12	9/13/2017	9:22:07	
14	6	18	1.00	16	7	23	50.49	9/13/2017	9:23:25	
14	6	19	1.00	12	13	25	132.86	9/13/2017	9:24:43	
14	6	20	1.00	15	7	23	86.70	9/13/2017	9:24:43	
14	6	21	1.00	9	8	17	73.50	9/13/2017		AM
14	6	22	1.00	16	9	25	108.21	9/13/2017	9:28:36	
14	6	23	1.00	13	6	19	44.48	9/13/2017	9:29:54	
14	6	24	1.00	7	16	27	247.02	9/13/2017	9:31:12	
18	6	25	1.00	21	5	27	71.74	9/13/2017	9:32:37	
18	6	26	1.00	20	8	29	67.52	9/13/2017	9:33:55	AM
18	6	27	1.00	21	8	31	83.57	9/13/2017	9:35:13	AM
18	6	28	1.00	19	7	27	74.57	9/13/2017	9:36:31	AM
18	6	29	1.00	20	7	27	44.08	9/13/2017	9:37:49	AM
18	6	30	1.00	19	17	38	119.53	9/13/2017	9:39:07	AM
18	6	31	1.00	16	7	24	81.68	9/13/2017	9:40:24	AM
18	6	32	1.00	35	6	42	58.51	9/13/2017	9:41:42	
18	6	33	1.00	16	13	30	100.31	9/13/2017	9:43:01	
18	6	34	1.00	19	8	28	103.89	9/13/2017		
18	6	35	1.00	23	7	30	56.01	9/13/2017	9:45:36	
18	6	36	1.00	19	12	32	107.72	9/13/2017	9:46:54	
37	6	37	1.00	10	8	18	100.76	9/13/2017	9:48:19	
37	6	38	1.00	23	8	31	48.12	9/13/2017		
				23 15			91.16			
37	6	39	1.00		4	20		9/13/2017		
37	6	40	1.00	17	7	25	66.09	9/13/2017		AM
37	6	41	1.00	24	12	37	83.25	9/13/2017	9:53:31	
37	6	42	1.00	11	8	19	59.60	9/13/2017		AM
37	6	43	1.00	18	8	26	48.18	9/13/2017	9:56:07	
37	6	44	1.00	11	6	17	70.86	9/13/2017	9:57:24	
37	6	45	1.00	24	4	29	61.68	9/13/2017	9:58:42	
37	6	46	1.00	19	6	26	73.73	9/13/2017	10:00:00	
37	6	47	1.00	23	8	31	65.89	9/13/2017	10:01:18	AM
37	6	48	1.00	17	3	20	40.85	9/13/2017	10:02:36	MA
2	6	49	1.00	18	8	28	131.88	9/13/2017	10:04:00	AM
Missi	ing	vial 50.	(Area not	acce	essible)					
2	6	51	1.00	12	4	16	45.14	9/13/2017	10:05:19	AM
2	6	52	1.00	13	4	17	79.54	9/13/2017	10:06:37	AM
2	6	53	1.00	13	8	21	60.83	9/13/2017	10:07:55	
2	6	54	1.00	18	4	22	32.52	9/13/2017	10:09:13	
2	6	55	1.00	20	12	34	94.41	9/13/2017	10:10:31	
2	6	56	1.00	10	8	19	115.86	9/13/2017	10:11:49	
2	6	57	1.00	24	6	30	36.49	9/13/2017	10:13:07	
2	6	58	1.00	16	9	26	95.56	9/13/2017	10:14:25	
2	6	59	1.00	22	12	34	57.96	9/13/2017	10:14:23	
					ssible)	34	57.90	9/13/2017	10.15.43	Alvi
		vial 60.				27	100 46	0/12/2017	10.17.00	7. 1. //
3	6	61	1.00	16	9	27	120.46	9/13/2017	10:17:09	
3	6	62	1.00	21	16	38	105.13	9/13/2017	10:18:27	
3	6	63	1.00	22	9	34	117.38	9/13/2017	10:19:45	
3	6	64	1.00	24	6	30	39.72	9/13/2017	10:21:03	
3	6	65	1.00	15	6	21	47.27	9/13/2017	10:22:21	
3	6	66	1.00	16	13	29	81.88	9/13/2017	10:23:39	
3	6	67	1.00	7	6	17	303.14	9/13/2017	10:24:57	AM

User: Sai Yan

Protocol# 6 - Wipe Test.lsa

vault ceiling

_	_									
3	6	68	1.00	24	11	36	77.20	9/13/2017	10:26:15	
3	6	69	1.00	11	9	21	114.12	9/13/2017	10:27:33	
3	6	70	1.00	17	10	27	74.69	9/13/2017	10:28:51	
3	6	71	1.00	13	6	19	42.44	9/13/2017	10:30:09	AM
3	6	72	1.00	19	4	25	99.54	9/13/2017	10:31:27	AM
26	6	73	1.00	18	7	26	77.91	9/13/2017	10:32:52	AM
26	6	74	1.00	11	7	19	148.29	9/13/2017	10:34:10	AM
26	6	75	1.00	23	7	31	69.92	9/13/2017	10:35:27	AM
26	6	76	1.00	20	8	28	62.59	9/13/2017	10:36:46	
26	6	77	1.00	19	10	30	140.33	9/13/2017	10:38:04	
26	6	78	1.00	19	8	27	53.05	9/13/2017	10:39:22	
26	6	79	1.00	16	8	24	55.57	9/13/2017	10:40:40	
26	6	80	1.00	26	15	41	77.45	9/13/2017	10:41:58	
26	6	81	1.00	12	9	21	103.92	9/13/2017	10:43:16	
26	6	82	1.00	29	8	41	122.50	9/13/2017	10:44:34	
26	6	83	1.00	20	5	25	37.72	9/13/2017	10:45:52	
26	6	84	1.00	21	8	30	74.47	9/13/2017	10:47:10	
65	6	85	1.00	28	10	39	80.58	9/13/2017	10:48:34	
65	6	86	1.00	19	8	27	57.59	9/13/2017	10:40:54	
65	6	87	1.00	12	9	23	139.32	9/13/2017	10:49:53	
65	6	88	1.00	16	5	22	75.63	9/13/2017	10:51:10	
65	6	89	1.00	22	5	29	117.30	9/13/2017	10:53:46	
65	6	90	1.00	30	9	42	125.13	9/13/2017	10:55:05	
65	6	91	1.00	14	12	26	70.84	9/13/2017	10:56:23	
65	6	92	1.00	19	7	27	93.89	9/13/2017	10:57:41	
65	6	93	1.00	32	12	49	122.22	9/13/2017	10:58:59	
65	6	94	1.00	19	7	27	72.41	9/13/2017	11:00:17	
65	6	95	1.00	18	14	32	68.81	9/13/2017	11:01:35	
65	6	96	1.00	13	10	23	78.96	9/13/2017	11:02:53	
23	6	97	1.00	23	13	37	106.32	9/13/2017	11:04:17	
23	6	98	1.00	14	12	26	64.94	9/13/2017	11:05:35	
23	6	99(C14D) 1.00	22	7	30	73.99	9/13/2017	11:06:54	AM
23	6	100(C31D) 1.00	22	12	34	66.09	9/13/2017	11:08:11	AM
23	6	101 (C33D		16	8	25	86.38	9/13/2017	11:09:29	AM
23	6	102 (C37D) 1.00	17	7	25	96.50	9/13/2017	11:10:47	AM
23	6	103 (C44D	1.00	19	10	29	52.58	9/13/2017	11:12:05	AM
23	6	104 (C55D) 1.00	20	7	28	82.08	9/13/2017	11:13:23	AM
23	6	105 (C66D		18	9	27	45.62	9/13/2017	11:14:42	AM
23	6	106 (C75D)		14	12	27	113.09	9/13/2017	11:16:00	
23	6	107 (C92D		13	7	20	76.64	9/13/2017	11:17:18	
23	6	108(C95D)		15	11	27	103.71	9/13/2017	11:18:35	
		vial 109.	,			<u>-</u> .	_ 33	-, -0, -01,		
22	6	110	1.00	18	3	22	61.72	9/13/2017	11:20:19	ΑM
	J			0	3		J,_	2, 20, 2011		

Background = 22 cpm

MDA = 40 dpm

With H-3 efficiency = 62%

Action Level = 47 cpm

All wipes are < MDA

Unless otherwise marked

Sample #93 was recounted, see the recount

9/13/2017 12:26:55 PM

vault ceiling sample 93 rerun

Page 1

User: Sai Yan

Assay Definition

Protocol# 8 - Wipe Test.lsa

Assay Description:

Wipe Test

Assay Type: CPM Report Name: Report1

Output Data Path: C:\Packard\Tricarb\Results\Sai Yan\Wipe Test\20170913_1223

Raw Results Path: C:\Packard\Tricarb\Results\Sai Yan\Wipe Test\20170913_1223\20170913_

1223.results

Comma-Delimited File Name: C:\Packard\Tricarb\Results\Sai Yan\Wipe Test\20170913_1223

\Report1.csv

Assay File Name: C:\Packard\TriCarb\Assays\Wipe Test.lsa

Count Conditions

Nuclide: Fun Wipes

Quench Indicator: SIS

External Std Terminator (sec): n/a

Pre-Count Delay (min): 0.00

0.0

Quench Set: n/a

Count Time (min): 1.00 Count Mode: Normal

Assay Count Cycles: 1 Repeat Sample Count: 1 Number of Vials/Sample: 1 Calculate % Reference: Off

Background Subtract

Background = 22 cpm

MDA = 40 dpmBackground Subtract: Off Low CPM Threshold: Off

2000.0

With H-3 efficiency = 62% 2 Sigma % Terminator: Off

Action Level = 47 cpmRegions LLULAll wipes are < MDA 0.0 Α 18.6

Unless otherwise marked В 18.6 156.0

Recount of sample #93 was less than

action level and MDA

Count Corrections

C

Luminescence Correction: Off GCT: n/a Static Controller: On PAC: n/a Colored Samples: n/a Heterogeneity Monitor: n/a

Coincidence Time (nsec): 18 Delay Before Burst (nsec): 75 PAC Strength: n/a

Instrument Block Data

MODEL=Tri-Carb 4910TR SERIAL=SGLO34150058

PID	P#	s#	Count Time	CPMA	CPMB	CPMC	SIS	DATE	TIME
25	8	1	1.00	14	8	24	126.80	9/13/2017	12:24:14 PM
Miss	ing v	vial 2	•						
25	R	3	1 00	16	5	22	94 66	9/13/2017	12:25:34 DM

User: Sai Yan

Protocol# 10 - Wipe Test.lsa

vault south wall

Assay Definition

Assay Description:

Wipe Test

Assay Type: CPM Report Name: Report1

Output Data Path: C:\Packard\Tricarb\Results\Sai Yan\Wipe Test\20170911 1757

Raw Results Path: C:\Packard\Tricarb\Results\Sai Yan\Wipe Test\20170911 1757\20170911

Comma-Delimited File Name: C:\Packard\Tricarb\Results\Sai Yan\Wipe Test\20170911 1757

\Report1.csv

Assay File Name: C:\Packard\TriCarb\Assays\Wipe Test.lsa

Count Conditions

Nuclide: Fun Wipes

Quench Indicator: SIS

External Std Terminator (sec): n/a

Pre-Count Delay (min): 0.00

Quench Set: n/a

Count Time (min): 1.00

Count Mode: Normal

Assay Count Cycles: 1

Repeat Sample Count: 1

Number of Vials/Sample: 1 Calculate % Reference: Off

 $MDA = \frac{42}{dpm}$

with H-3 efficiency = 62%

Background Subtract

Background Subtract: Off Low CPM Threshold: Off

2 Sigma % Terminator: Off

Regions $_{
m LL}$ 0.0 18.6 Α 18.6 156.0 В С 0.0 2000.0

 \pm tion Level = $\frac{5}{1}$

All wipes are < MDA

unless otherwise marked.

Count Corrections

GCT: n/a Luminescence Correction: Off Static Controller: On PAC: n/a Heterogeneity Monitor: n/a Colored Samples: n/a

Coincidence Time (nsec): 18 Delay Before Burst (nsec): 75 PAC Strength: n/a

Instrument Block Data

MODEL=Tri-Carb 4910TR SERIAL=SGLO34150058

~,~~			-						
PID	P#	S#	Count Time	CPMA	CPMB	CPMC	SIS	DATE	TIME
9	10	1	1.00	14	6	22	139.93	9/11/2017	5:58:42 PM
9	10	2	1.00	20	3	25	94.55	9/11/2017	6:00:00 PM
9	10	3	1.00	13	14	29	148.19	9/11/2017	6:01:18 PM
9	10	4	1.00	17	4	22	88.36	9/11/2017	6:02:36 PM
9	10	5	1.00	19	14	36	154.56	9/11/2017	6:03:54 PM
9	10	6	1.00	18	11	29	78.40	9/11/2017	6:05:12 PM
9	10	7	1.00	11	3	15	66.93	9/11/2017	6:06:30 PM

Protocol# 10 - Wipe Test.lsa

vault south wall

liss	ina	vial 8. (A	rea not	access	ible)					
9	1Õ	9	1.00	21	4	25	55.31	9/11/2017	6:07:49	PM
9	10	10	1.00	11	12	26	189.04	9/11/2017	6:09:07	PM
9	10	11	1.00	12	16	31	154.73	9/11/2017	6:10:25	PM
9	10	12	1.00	19	5	29	249.13	9/11/2017	6:11:43	PM
23	10	13	1.00	15	5	22	116.80	9/11/2017		PM
23	10	14	1.00	13	5	19	74.72	9/11/2017		PM
23	10	15	1.00	8	·13	21	64.70	9/11/2017	6:15:44	PM
23	10	16	1.00	15	8	24	71.89	9/11/2017	6:17:01	PM
23	10	17	1.00	18	6	26	111.79	9/11/2017	6:18:19	PM
23	10	18	1.00	23	6	30	85.48	9/11/2017	6:19:37	PM
23	10	19	1.00	10	5	19	261.62	9/11/2017		PM
23	10	20	1.00	9	6	16	118.37	9/11/2017	6:22:13	PM
23	10	21	1.00	13	6	19	60.83	9/11/2017	6:23:31	PM
23	10	22	1.00	20	11	32	95.25	9/11/2017	6:24:49	PM
23	10	23	1.00	14	10	24	67.61	9/11/2017		PM
23	10	24	1.00	16	7	24	63.66	9/11/2017	6:27:25	PM
22	10	25	1.00	11	3	17	191.30	9/11/2017		PM
22	10	26	1.00	16	7	26	177.11	9/11/2017	6:30:27	PM
22	10	27	1.00	16	9	26	94.02	9/11/2017		PM
22	10	28	1.00	18	11	32	147.11	9/11/2017		PM
22	10	29	1.00	14	6	22	144.32	9/11/2017		PΜ
22	10	30	1.00	17	7	24	67.54	9/11/2017	6:35:39	
22	10	31	1.00	15	10	27	145.68	9/11/2017	6:36:56	
22	10	32	1.00	14	9	24	85.20	9/11/2017		PM
22	10	33	1.00	14	4	18	33.97	9/11/2017	6:39:32	
22	10	34	1.00	15	7	24	105.93	9/11/2017		ΡM
22	10	35	1.00	12	8	20	85.78	9/11/2017		PM
22	10	36	1.00	25	9	35	84.54	9/11/2017		PM
,10	10	37	1.00	12	1	13	38.09	9/11/2017		PM
10	10	38	1.00	16	13	32	152.02	9/11/2017		PM
10	10	39	1.00	14	9	23	61.16	9/11/2017		PM
10	10	40	1.00	10	6	16	47.88	9/11/2017	6:49:06	
10	10	41	1.00	21	8	31	98.50	9/11/2017		PM
10	10	42	1.00	23	6	29	57.31	9/11/2017		PM
10	10	43	1.00	21	13	37	123.23	9/11/2017		PM
10	10	44	1.00	27	12	39	47.05	9/11/2017		PM
10	10	45	1.00	18	15	33	123.89	9/11/2017		PM
10	10	46(S5D)	1.00	17	11	30	127.12	9/11/2017		PM
10	10	47(S11D)		9	6	17	148.56	9/11/2017		
10	10	48(S20D)		10	7	17	79.05	9/11/2017		PM
25	10	49(S38D)	1.00	11	4	15	81.91	9/11/2017	7:01:12	PM
		vial 50.		4.5	0	0.5	77 70	0 /11 /0017	7.00.00	D) 4
25	10	51	1.00	17	8	25	77.78	9/11/2017	7:02:32	ΡM

User: Sai Yan

Protocol# 4 - Wipe Test.lsa

vault north wall

Assay Definition

Assay Description:

Wipe Test

Assay Type: CPM Report Name: Report1

Output Data Path: C:\Packard\Tricarb\Results\Sai Yan\Wipe Test\20170911 1621

Raw Results Path: C:\Packard\Tricarb\Results\Sai Yan\Wipe Test\20170911 1621\20170911

Comma-Delimited File Name: C:\Packard\Tricarb\Results\Sai Yan\Wipe Test\20170911 1621

\Report1.csv

Assay File Name: C:\Packard\TriCarb\Assays\Wipe Test.lsa

Count Conditions

Nuclide: Fun Wipes

Quench Indicator: SIS

External Std Terminator (sec): n/a

Pre-Count Delay (min): 0.00

Quench Set: n/a

Count Time (min): 1.00 Count Mode: Normal

Repeat Sample Count: 1

Assay Count Cycles: 1 Number of Vials/Sample: 1 Calculate % Reference: Off

Packground Subtract

Background Subtract: Off

Low CPM Threshold: Off

2 Sigma % Terminator: Off

with H-3 efficiency = 62%

All wipes are < MDA

Regions $_{
m LL}$ UL0.0 18.6 Α В 18.6 156.0 0.0 2000.0 С

unless otherwise marked.

Count Corrections

Luminescence Correction: Off GCT: n/a Static Controller: On Heterogeneity Monitor: n/a PAC: n/a Colored Samples: n/a

Coincidence Time (nsec): 18 Delay Before Burst (nsec): 75 PAC Strength: n/a

Instrument Block Data

MODEL=Tri-Carb 4910TR SERIAL=SGLO34150058

		-						
P#	S#	Count Time	CPMA	CPMB	CPMC	SIS	DATE	TIME
4	1	1.00	10	10	20	76.08	9/11/2017	4:22:48 PM
4	2	1.00	9	9	19	118.64	9/11/2017	4:24:06 PM
4	3	1.00	17	6	24	89.50	9/11/2017	4:25:24 PM
4	4	1.00	12	5	19	135.71	9/11/2017	4:26:42 PM
4	5	1.00	16	8	25	103.66	9/11/2017	4:28:00 PM
4	6	1.00	13	7	21	82.35	9/11/2017	4:29:18 PM
4	7	1.00	16	8	26	116.98	9/11/2017	4:30:36 PM
	P# 4 4 4 4	P# S# 4 1 4 2 4 3 4 4	P# S# Count Time 4 1 1.00 4 2 1.00 4 3 1.00 4 4 1.00 4 5 1.00 4 6 1.00	P# S# Count Time CPMA 4 1 1.00 10 4 2 1.00 9 4 3 1.00 17 4 4 1.00 12 4 5 1.00 16 4 6 1.00 13	P# S# Count Time CPMA CPMB 4 1 1.00 10 10 4 2 1.00 9 9 4 3 1.00 17 6 4 4 1.00 12 5 4 5 1.00 16 8 4 6 1.00 13 7	P# S# Count Time CPMA CPMB CPMC 4 1 1.00 10 10 20 4 2 1.00 9 9 19 4 3 1.00 17 6 24 4 4 1.00 12 5 19 4 5 1.00 16 8 25 4 6 1.00 13 7 21	P# S# Count Time CPMA CPMB CPMC SIS 4 1 1.00 10 10 20 76.08 4 2 1.00 9 9 19 118.64 4 3 1.00 17 6 24 89.50 4 4 1.00 12 5 19 135.71 4 5 1.00 16 8 25 103.66 4 6 1.00 13 7 21 82.35	P# S# Count Time CPMA CPMB CPMC SIS DATE 4 1 1.00 10 10 20 76.08 9/11/2017 4 2 1.00 9 9 19 118.64 9/11/2017 4 3 1.00 17 6 24 89.50 9/11/2017 4 4 1.00 12 5 19 135.71 9/11/2017 4 5 1.00 16 8 25 103.66 9/11/2017 4 6 1.00 13 7 21 82.35 9/11/2017

User: Sai Yan

Protocol# 4 - Wipe Test.lsa

vault north wall

	14	4	8	1.00	12	7	19	66.78	9/11/2017	4:31:54 H	РМ
1	14	4	9	1.00	14	5	21	210.75	9/11/2017		PM
	14	4	10	1.00	10	11	23	188.10	9/11/2017		PM
	14	4	11	1.00	13	9	24	124.81	9/11/2017		PM
	14	4	12	1.00	8	12	22	132.92	9/11/2017		PM
	3	4	13	1.00	13	7	22	161.30	9/11/2017		PM
	3	4	14	1.00	14	14	30	164.25	9/11/2017		PM
	3	4	15	1.00	16	12	29	96.99	9/11/2017		PM
	3	4	16	1.00	20	9	29	70.71	9/11/2017		PM
	3	4	17	1.00	15	5	22	111.55	9/11/2017		PM
	3	4	18	1.00	15	9	24	55.44	9/11/2017	4:45:00 H	PM
	3	4	19	1.00	16	12	29	68.43	9/11/2017	4:46:18 H	PM
	3 3 3 3	4	20	1.00	15	5	20	46.06	9/11/2017	4:47:36 E	PM
	3	4	21	1.00	15	11	28	107.94	9/11/2017	4:48:54 H	PM
	3	4	22	1.00	14	4	18	49.40	9/11/2017	4:50:12 F	PM
	3	4	23	1.00	14	7	22	70.47	9/11/2017	4:51:30 E	PM
	3	4	24	1.00	15	11	28	143.29	9/11/2017	4:52:48 B	PM
	26	4	25	1.00	10	12	23	161.37	9/11/2017	4:54:12 H	PM
	26	4	26	1.00	12	4	16	77.54	9/11/2017	4:55:31 E	PΜ
	26	4	27	1.00	21	12	34	83.08	9/11/2017	4:56:48 H	PM
	26	4	28	1.00	14	7	22	70.11	9/11/2017		PM
	26	4	29	1.00	20	7	27	46.52	9/11/2017		PΜ
	26	4	30	1.00	7	10	18	139.55	9/11/2017	5:00:43 E	PM
	26	4	31	1.00	15	10	25	59.87	9/11/2017	5:02:00 H	PM
	26	4	32	1.00	11	7	21	226.50	9/11/2017		PM
	26	4	33	1.00	6	2	8	34.11	9/11/2017		PM
	26	4	34	1.00	23	5	30	136.67	9/11/2017		PM
	26	4	35	1.00	11	9	21	97.74	9/11/2017		PM
	26	4	36	1.00	12	7	20	119.57	9/11/2017		PM
	,27	4	37	1.00	15	12	27	62.31	9/11/2017		PM
/	-1 27	4	38	1.00	15	3	19	68.63	9/11/2017		PM
	127	4	39	1.00	12	8	23	171.49	9/11/2017		PM.
	127	4	40	1.00	11	3	14	45.40	9/11/2017		PM
	127	4	41(N5D)	1.00	12	17	32	188.37	9/11/2017		PM
	127	4	42(N9D)	1.00	15	9	26	104.57	9/11/2017		PM
	127	4	43(N15D)	1.00	24	5	30	57.41	9/11/2017	5:17:42 E	
	127	4	44(N34D)	1.00	20	6	28	167.35	9/11/2017	5:19:00 E	PM
		ing	vial 45.								
	127	4	46	1.00	16	6	22	66.97	9/11/2017	5:20:19 E	PM

User: Sai Yan

Protocol# 8 - Wipe Test.lsa

vault west wall

Assay Definition

Assay Description:

Wipe Test

Assay Type: CPM Report Name: Report1

Output Data Path: C:\Packard\Tricarb\Results\Sai Yan\Wipe Test\20170911 1720

Raw Results Path: C:\Packard\Tricarb\Results\Sai Yan\Wipe Test\20170911 1720\20170911

Comma-Delimited File Name: C:\Packard\Tricarb\Results\Sai Yan\Wipe Test\20170911 1720

\Report1.csv

Assay File Name: C:\Packard\TriCarb\Assays\Wipe Test.lsa

Count Conditions

Nuclide: Fun Wipes

Quench Indicator: SIS

External Std Terminator (sec): n/a

Pre-Count Delay (min): 0.00

Quench Set: n/a

Count Time (min): 1.00 Count Mode: Normal

Assay Count Cycles: 1

Repeat Sample Count: 1

Number of Vials/Sample: 1 Calculate % Reference: Off

with H-3 efficiency = 62%

All wipes are < MDA

unless otherwise marked.

Background Subtract

Background Subtract: Off Low CPM Threshold: Off

2 Sigma % Terminator: Off

Regions $_{
m LL}$ 0.0 Α 18.6 В 18.6 156.0 С 0.0 2000.0

Count Corrections

Static Controller: On Colored Samples: n/a

Coincidence Time (nsec): 18

Luminescence Correction: Off

Heterogeneity Monitor: n/a Delay Before Burst (nsec): 75 GCT: n/a PAC: n/a

PAC Strength: n/a

Instrument Block Data

MODEL=Tri-Carb 4910TR SERIAL=SGLO34150058

Cyci	C 1 1	COUL							
PID	P#	S#	Count Time	CPMA	CPMB	CPMC	SIS	DATE	TIME
21	8	1	1.00	12	14	27	120.88	9/11/2017	5:21:48 PM
21	8	2	1.00	23	12	37	94.33	9/11/2017	5:23:06 PM
21	8	3	1.00	16	6	23	72.89	9/11/2017	5:24:24 PM
$\frac{1}{21}$	8	4	1.00	20	6	27	68.75	9/11/2017	5:25:41 PM
21	8	5	1.00	14	6	20	63.64	9/11/2017	5:26:59 PM
21	8	6	1.00	17	10	27	60.87	9/11/2017	5:28:17 PM
21	8	7	1.00	22	10	32	73.80	9/11/2017	5:29:35 PM

User: Sai Yan

Protocol# 8 - Wipe Test.lsa

vault west wall

. 2	1 8	8	1.00	16	8	27	171.96	9/11/2017	5:30:53	PM
<u> </u>	1 8	9	1.00	11	8	20	99.75	9/11/2017	5:32:11	PM
2	1 8	10	1.00	15	9	24	75.12	9/11/2017	5:33:29	PM
2	:1 8	11	1.00	23	8	32	81.50	9/11/2017	5:34:47	PM
2	:1 8	12	1.00	18	5	24	78.51	9/11/2017	5:36:05	PM
6	5 8	13	1.00	14	10	25	102.52	9/11/2017	5:37:29	PM
6	5 8	14	1.00	15	3	19	92.55	9/11/2017	5:38:47	PM
6	5 8	15	1.00	20	7	28	69.65	9/11/2017	5:40:05	PM
6	5 8	16	1.00	11	8	19	73.87	9/11/2017	5:41:23	PM
6	5 8	17	1.00	15	7	24	136.16	9/11/2017	5:42:41	PM
6	5 8	18	1.00	15	9	26	118.77	9/11/2017	5:43:59	PM
6	5 8	19	1.00	14	7	24	195.57	9/11/2017	5:45:17	PM
6	5 8	20	1.00	17	7	25	100.38	9/11/2017	5:46:35	PM
6	5 8	21	1.00	14	3	18	99.75	9/11/2017	5:47:53	PM
6	5 8	22	1.00	16	14	31	106.68	9/11/2017	5:49:11	PM
6	5 8	23	1.00	15	5	20	45.49	9/11/2017	5:50:28	PM
6	5 8	24	1.00	8	7	16	96.60	9/11/2017	5:51:46	PM
	2 8	25	1.00	13	7	20	59.71	9/11/2017	5:53:10	PM
	2 8	26(W4D)	1.00	17	8	26	117.20	9/11/2017	5:54:29	PM
	2 8	27(W13D)	1.00	23	9	32	64.85	9/11/2017	5:55:47	PM
Mi	ssing	vial 28.								
	2 8	29	1.00	18	12	32	108.39	9/11/2017	5:57:06	PM

User: Sai Yan

Protocol# 3 - Wipe Test.lsa

vault east wall

Assay Definition

Assay Description:

Wipe Test

Assay Type: CPM Report Name: Report1

Output Data Path: C:\Packard\Tricarb\Results\Sai Yan\Wipe Test\20170911 1552

Raw Results Path: C:\Packard\Tricarb\Results\Sai Yan\Wipe Test\20170911 1552\20170911

1552.results

Comma-Delimited File Name: C:\Packard\Tricarb\Results\Sai Yan\Wipe Test\20170911 1552

\Report1.csv

Assay File Name: C:\Packard\TriCarb\Assays\Wipe Test.lsa

Count Conditions

Nuclide: Fun Wipes

Quench Indicator: SIS

External Std Terminator (sec): n/a

Pre-Count Delay (min): 0.00

Ouench Set: n/a

Count Time (min): 1.00

Count Mode: Normal

Assay Count Cycles: 1

Number of Vials/Sample: 1 Calculate % Reference: Off

Background = 25 com

Repeat Sample Count: 1

with H-3 efficiency = 62%

Packground Subtract

Background Subtract: Off Low CPM Threshold: Off

2 Sigma % Terminator: Off

All wipes are < MDA

unless otherwise marked.

Regions LLUL0.0 18.6 Α В 18.6 156.0 С 0.0 2000.0

Count Corrections

Luminescence Correction: Off GCT: n/a Static Controller: On Heterogeneity Monitor: n/a PAC: n/a Colored Samples: n/a

Coincidence Time (nsec): 18 Delay Before Burst (nsec): 75 PAC Strength: n/a

Instrument Block Data

MODEL=Tri-Carb 4910TR SERIAL=SGLO34150058

חדה	P#	S#	Count Time	CPMA	CPMB	CPMC	SIS	DATE	TIME
PID	P#	5#	Count Time	CPMA	CFMB	CFMC			
2	3	1	1.00	15	4	19	48.70	9/11/2017	3:53:57 PM
2	3	2	1.00	12	13	26	128.21	9/11/2017	3:55:14 PM
, 2	3	3	1.00	25	8	33	55.84	9/11/2017	3:56:32 PM
2	3	4	1.00	23	9	34	87.47	9/11/2017	3:57:50 PM
2	3	5	1.00	10	7	18	90.15	9/11/2017	3:59:08 PM
2	3	6	1.00	16	9	28	148.06	9/11/2017	4:00:26 PM
2	3	7	1.00	19	6	25	51.20	9/11/2017	4:01:44 PM

9/11/2017 4:21:35 PM QuantaSmart (TM) - 5.00 - Serial# SGLO34150058

User: Sai Yan

Protocol# 3 - Wipe Test.lsa

vaul	t	eas	t	wa	1	1
------	---	-----	---	----	---	---

. ,	2	3	8	1.00	15	7	25	146.93	9/11/2017	4:03:02	PM
	2	3	9	1.00	12	11	25	182.44	9/11/2017	4:04:20	PM
	2	3	10	1.00	15	9	25	106.46	9/11/2017	4:05:38	PM
	2	3	11	1.00	10	0	10	27.93	9/11/2017	4:06:55	PM
	2	3	12	1.00	10	4	14	67.52	9/11/2017	4:08:13	PM
	25	3	13	1.00	16	10	28	139.66	9/11/2017	4:09:38	PM
	25	3	14	1.00	14	9	23	53.18	9/11/2017	4:10:55	PM
	25	3	15	1.00	15	5	21	103.12	9/11/2017	4:12:13	PM
	25	3	16	1.00	9	6	17	133.83	9/11/2017	4:13:32	PM
	25	3	17	1.00	16	15	32	99.51	9/11/2017	4:14:49	PM
	25	3	18	1.00	22	13	35	73.38	9/11/2017	4:16:07	PM
	25	3	19	1.00	24	13	40	119.33	9/11/2017	4:17:25	PM
	25	3	20(E6D)	1.00	9	10	19	74.19	9/11/2017	4:18:44	PM
	25	3	21(E11D)	1.00	25	9	34	69.12	9/11/2017	4:20:01	PM
М	issin	ıg via	al 22.								
	25	3	23	1.00	15	9	25	98.64	9/11/2017	4:21:21	PM

Protocol# 7 - Wipe Test.lsa

vault pit wall

Ássay Definition

Assay Description:

Wipe Test

Assay Type: CPM Report Name: Report1

Output Data Path: C:\Packard\TriCarb\Results\Tri Le\Wipe Test

Raw Results Path: C:\Packard\Tricarb\Results\Sai Yan\Wipe Test\20170911 1535\20170911

Comma-Delimited File Name: C:\Packard\TriCarb\Results\Tri Le\Wipe Test\Report1.csv

Assay File Name: C:\Packard\TriCarb\Assays\Wipe Test.lsa

Count Conditions

Nuclide: Fun Wipes

Quench Indicator: SIS

External Std Terminator (sec): n/a

Pre-Count Delay (min): 0.00

Quench Set: n/a

Count Time (min): 1.00 Count Mode: Normal

Assay Count Cycles: 1 Repeat Sample Count: 1

Number of Vials/Sample: 1 Calculate % Reference: Off

Page 1

User: Sai Yan

Background Subtract

ackground Subtract: Off Low CPM Threshold: Off

2 Sigma % Terminator: Off

with H-3 efficiency = 62%

All wipes are < MDA

Regions LLUL 18.6 0.0 Α 156.0 18.6 В

С 0.0 2000.0 unless otherwise marked.

Count Corrections

Luminescence Correction: Off GCT: n/a Static Controller: On PAC: n/a Heterogeneity Monitor: n/a Colored Samples: n/a

Coincidence Time (nsec): 18 Delay Before Burst (nsec): 75 PAC Strength: n/a

Instrument Block Data

MODEL=Tri-Carb 4910TR SERIAL=SGLO34150058

PID	P#	S#	Count Time	CPMA	CPMB	CPMC	SIS	DATE	TIME
21	7	1	1.00	19	5	24	52.16	9/11/2017	3:36:33 PM
21	7	2	1.00	15	9	25	76.75	9/11/2017	3:37:50 PM
21	7	3	1.00	14	5	19	55.63	9/11/2017	3:39:09 PM
21	7	4	1.00	24	9	35	88.61	9/11/2017	3:40:27 PM
21	7	5	1.00	21	11	34	123.49	9/11/2017	3:41:45 PM
21	7	6	1.00	9	11	22	130.95	9/11/2017	3:43:02 PM
21	7	7	1.00	17	12	30	76.83	9/11/2017	3:44:20 PM
21	7	8	1.00	18	9	29	126.66	9/11/2017	3:45:38 PM

9/11/2017 3:52:43 PM QuantaSmart (TM) - 5.00 - Serial# SGL034150058 Page 2 Protocol# 7 - Wipe Test.lsa User: Sai Yan vault pit wall 21 21 1.00 19 9 12 31 52.27 9/11/2017 3:46:56 PM 7 1.00 10 11 10 21 82.74 9/11/2017 3:48:14 PM 7

30

27

33

79.45

169.82

76.38

9/11/2017

9/11/2017

9/11/2017

3:49:32 PM

3:50:50 PM

3:52:16 PM

6

12

13

21

21

7

Missing vial 13.

11

14

12(P4D)

1.00

1.00

1.00

23

12

20